Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 35(1): ar5, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910189

RESUMO

The interaction between aggregated low-density lipoprotein (agLDL) and macrophages in arteries plays a major role in atherosclerosis. Macrophages digest agLDL and generate free cholesterol in an extracellular, acidic, hydrolytic compartment known as the lysosomal synapse. Macrophages form a tight seal around agLDL through actin polymerization and deliver lysosomal contents into this space in a process termed digestive exophagy. Our laboratory has identified TLR4 activation of MyD88/Syk as critical for digestive exophagy. Here we use pharmacological agents and siRNA knockdown to characterize signaling pathways downstream of Syk that are involved in digestive exophagy. Syk activates Bruton's tyrosine kinase (BTK) and phospholipase Cγ2 (PLCγ2). We show that PLCγ2 and to a lesser extent BTK regulate digestive exophagy. PLCγ2 cleaves PI(4,5)P2 into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). Soluble IP3 activates release of Ca2+ from the endoplasmic reticulum (ER). We demonstrate that Ca2+ release from the ER is upregulated by agLDL and plays a key role in digestive exophagy. Both DAG and Ca2+ activate protein kinase Cα (PKCα). We find that PKCα is an important regulator of digestive exophagy. These results expand our understanding of the mechanisms of digestive exophagy, which could be useful in developing therapeutic interventions to slow development of atherosclerosis.


Assuntos
Aterosclerose , Proteína Quinase C-alfa , Humanos , Proteína Quinase C-alfa/metabolismo , Fosfolipase C gama/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Lipoproteínas LDL/metabolismo , Tirosina Quinase da Agamaglobulinemia/metabolismo , Aterosclerose/metabolismo , Digestão
2.
Front Cardiovasc Med ; 10: 1148304, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926046

RESUMO

Cardiovascular diseases remain the leading cause of death throughout the world. Accumulation of lipoprotein-associated lipids and their interaction with macrophages are early steps in the development of atherosclerotic lesions. For decades, it has been known that aggregates of lipoproteins in the subendothelial space are found in early plaques, and these aggregates are tightly associated with extracellular matrix fibers. Additionally, most of the cholesterol in these subendothelial aggregates is unesterified, in contrast to the core of low-density lipoproteins (LDL), in which cholesteryl esters predominate. This suggests that the hydrolysis of cholesteryl esters occurs extracellularly. At the cellular level, macrophages in early plaques engage with the LDL and ingest large amounts of cholesterol, which is esterified and stored in lipid droplets. When excessive lipid droplets have accumulated, endoplasmic reticulum stress responses are activated, leading to cell death. The cholesterol-laden dead cells must be cleared by other macrophages. For many years, it was unclear how unesterified (free) cholesterol could be formed extracellularly in early lesions. Papers in the past decade have shown that macrophages form tightly sealed extracellular attachments to aggregates of LDL. These sealed regions become acidified, and lysosomal contents are secreted into these compartments. Lysosomal acid lipase hydrolyzes the cholesteryl esters, and the free cholesterol is transported into the macrophages. High concentrations of cholesterol can also lead to formation of crystals of cholesterol hydrate, and these crystals have been observed in atherosclerotic blood vessels. Characterization of this process may lead to novel therapies for the prevention and treatment of atherosclerosis.

3.
Elife ; 112022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35040777

RESUMO

Cell surface receptors control how cells respond to their environment. Many cell surface receptors recycle from endosomes to the plasma membrane via a recently discovered pathway, which includes sorting-nexin SNX17, Retriever, WASH, and CCC complexes. Here, using mammalian cells, we discover that PIKfyve and its upstream PI3-kinase VPS34 positively regulate this pathway. VPS34 produces phosphatidylinositol 3-phosphate (PI3P), which is the substrate for PIKfyve to generate PI3,5P2. We show that PIKfyve controls recycling of cargoes including integrins, receptors that control cell migration. Furthermore, endogenous PIKfyve colocalizes with SNX17, Retriever, WASH, and CCC complexes on endosomes. Importantly, PIKfyve inhibition results in displacement of Retriever and CCC from endosomes. In addition, we show that recruitment of SNX17 is an early step and requires VPS34. These discoveries suggest that VPS34 and PIKfyve coordinate an ordered pathway to regulate recycling from endosomes and suggest how PIKfyve functions in cell migration.


Assuntos
Membrana Celular/metabolismo , Endossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo , Animais , Linhagem Celular , Membrana Celular/química , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos
4.
Methods Mol Biol ; 2251: 1-17, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33481228

RESUMO

Phosphoinositide (PPI) lipids are a crucial class of low-abundance signaling molecules that regulate many processes within cells. Methods that enable simultaneous detection of all PPI lipid species provide a wholistic snapshot of the PPI profile of cells, which is critical for probing PPI biology. Here we describe a method for the simultaneous measurement of cellular PPI levels by metabolically labeling yeast or mammalian cells with myo-3H-inositol, extracting radiolabeled glycerophosphoinositides, and separating lipid species on an anion exchange column via HPLC.


Assuntos
Marcação por Isótopo/métodos , Fosfatos de Fosfatidilinositol/química , Fosfatidilinositóis/análise , Animais , Fenômenos Bioquímicos , Humanos , Inositol/química , Fosfatidilinositol 3-Quinases/análise , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/análise , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Radioisótopos/química , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia
5.
Mol Biol Cell ; 32(2): 143-156, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33237833

RESUMO

Phosphoinositide signaling lipids are essential for several cellular processes. The requirement for a phosphoinositide is conventionally studied by depleting the corresponding lipid kinase. However, there are very few reports on the impact of elevating phosphoinositides. That phosphoinositides are dynamically elevated in response to stimuli suggests that, in addition to being required, phosphoinositides drive downstream pathways. To test this hypothesis, we elevated the levels of phosphatidylinositol-3-phosphate (PI3P) by generating hyperactive alleles of the yeast phosphatidylinositol 3-kinase, Vps34. We find that hyperactive Vps34 drives certain pathways, including phosphatidylinositol-3,5-bisphosphate synthesis and retrograde transport from the vacuole. This demonstrates that PI3P is rate limiting in some pathways. Interestingly, hyperactive Vps34 does not affect endosomal sorting complexes required for transport (ESCRT) function. Thus, elevating PI3P does not always increase the rate of PI3P-dependent pathways. Elevating PI3P can also delay a pathway. Elevating PI3P slowed late steps in autophagy, in part by delaying the disassembly of autophagy proteins from mature autophagosomes as well as delaying fusion of autophagosomes with the vacuole. This latter defect is likely due to a more general defect in vacuole fusion, as assessed by changes in vacuole morphology. These studies suggest that stimulus-induced elevation of phosphoinositides provides a way for these stimuli to selectively regulate downstream processes.


Assuntos
Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Aminoácidos/metabolismo , Autofagia , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fusão de Membrana , Mutação/genética , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
6.
Mol Biol Cell ; 31(17): 1835-1845, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32583743

RESUMO

Fig4 is a phosphoinositide phosphatase that converts PI3,5P2 to PI3P. Paradoxically, mutation of Fig4 results in lower PI3,5P2, indicating that Fig4 is also required for PI3,5P2 production. Fig4 promotes elevation of PI3,5P2, in part, through stabilization of a protein complex that includes its opposing lipid kinase, Fab1, and the scaffold protein Vac14. Here we show that multiple regions of Fig4 contribute to its roles in the elevation of PI3,5P2: its catalytic site, an N-terminal disease-related surface, and a C-terminal region. We show that mutation of the Fig4 catalytic site enhances the formation of the Fab1-Vac14-Fig4 complex, and reduces the ability to elevate PI3,5P2. This suggests that independent of its lipid phosphatase function, the active site plays a role in the Fab1-Vac14-Fig4 complex. We also show that the N-terminal disease-related surface contributes to the elevation of PI3,5P2 and promotes Fig4 association with Vac14 in a manner that requires the Fig4 C-terminus. We find that the Fig4 C-terminus alone interacts with Vac14 in vivo and retains some functions of full-length Fig4. Thus, a subset of Fig4 functions are independent of its phosphatase domain and at least three regions of Fig4 play roles in the function of the Fab1-Vac14-Fig4 complex.


Assuntos
Flavoproteínas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Flavoproteínas/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , Monoéster Fosfórico Hidrolases/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...