Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Mil Med ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877895

RESUMO

INTRODUCTION: Warfighters are issued hard body armor designed to defeat ballistic projectiles. The resulting backface deformation can injure different thoracoabdominal organs. Developed over decades ago, the behind armor blunt impact criterion of maximum 44 mm depth in clay continues to be used independent of armor type or impact location on the thoracoabdominal region covered by the armor. Because thoracoabdominal components have different energy absorption capabilities, their mode of failures and mechanical properties are different. These considerations underscore the lack of effectiveness of using the single standard to cover all thoracoabdominal components to represent the same level of injury risk. The objective of this pilot study is to conduct cardiac impact tests with a live animal model and analyze biomechanical injury candidate metrics for behind armor blunt trauma applications. MATERIALS AND METHODS: Live swine tests were conducted after obtaining approvals from the U.S. DoD. Trachea tubes. An intravenous line were introduced into the swine before administering anesthesia. Pressure transducers were inserted into lungs and aorta. An indenter simulating backface deformation profiles produced by body armor from military-relevant ballistics to human cadavers delivered impact to the heart region. The approved test protocol included 6-hour monitoring and necropsies. Indenter accelerometer signals were processed to compute the velocity and deflection, and their peak magnitudes were obtained. The deflection-time signal was normalized with respect to chest depth along the impact axis. The peak magnitude of the viscous criterion, kinetic energy, force, momentum and stiffness were obtained. RESULTS: Out of the 8 specimens, 2 were sham controls. The mean total body mass and soft tissue thickness at the impact site were 81.1 ± 4.1 kg and 3.8 ± 1.1 cm. The peak velocities ranged from 30 to 59 m/s, normalized deflections ranged from 15 to 21%, and energies ranged from 105 to 407 J. The range in momentum and stiffness were 7.0 to 13.9 kg-m/s and 22.3 to 79.9 N/m. The maximum forces and impulse data ranged from 2.9 to 11.7 kN and 1.9 to 5.8 N-s. The peak viscous criterion ranged from 2.0 to 5.3 m/s. One animal did not sustain any injuries, 2 had cardiac injuries, and others had lung and skeletal injuries. CONCLUSIONS: The present study applied blunt impact loads to the live swine cardiac region and determined potential candidate injury metrics for characterization. The sample size of 6 swine produced injuries ranging from none to pure skeletal to pure organ trauma. The viscous criterion metric associated with the response of the animal demonstrated a differing pattern than other variables with increasing velocity. These findings demonstrate that our live animal experimental design can be effectively used with testing additional samples to develop behind armor blunt injury criteria for cardiac trauma in the form of risk curves. Injury criteria obtained for cardiac trauma can be used to enhance the effectiveness of the body armor, reduce morbidity and mortality, and improve warfighter readiness in combat operations.

2.
Int J Legal Med ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693332

RESUMO

Injury mechanisms of the lumbar spine under dynamic loading are dependent on spine curvature and anatomical variation. Impact simulation with finite element (FE) models can assist the reconstruction and prediction of injuries. The objective of this study was to determine which level of individualization of a baseline FE lumbar spine model is necessary to replicate experimental responses and fracture locations in a dynamic experiment.Experimental X-rays from 26 dynamic drop tower tests were used to create three configurations of a lumbar spine model (T12 to L5): baseline, with aligned vertebrae (positioned), and with aligned and morphed vertebrae (morphed). Each model was simulated with the corresponding loading and boundary conditions from dynamic lumbar spine experiments. Force, moment, and kinematic responses were compared to the experimental data. Cosine similarity was computed to assess how well simulation responses match the experimental data. The pressure distribution within the vertebrae was used to compare fracture risk and fracture location between the different models.The positioned models replicated the injured spinal level and the fracture patterns quite well, though the morphed models provided slightly more accuracy. However, for impact reconstruction or injury prediction, the authors recommend pure positioning for whole-body models, as the gain in accuracy was relatively small, while the morphing modifications of the model require considerably higher efforts. These results improve the understanding of the application of human body models to investigate lumbar injury mechanisms with FE models.

3.
Ann Biomed Eng ; 52(4): 816-831, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374520

RESUMO

For traumatic lumbar spine injuries, the mechanisms and influence of anthropometrical variation are not yet fully understood under dynamic loading. Our objective was to evaluate whether geometrically subject-specific explicit finite element (FE) lumbar spine models based on state-of-the-art clinical CT data combined with general material properties from the literature could replicate the experimental responses and the fracture locations via a dynamic drop tower-test setup. The experimental CT datasets from a dynamic drop tower-test setup were used to create anatomical details of four lumbar spine models (T12 to L5). The soft tissues from THUMS v4.1 were integrated by morphing. Each model was simulated with the corresponding loading and boundary conditions from the dynamic lumbar spine tests that produced differing injuries and injury locations. The simulations resulted in force, moment, and kinematic responses that effectively matched the experimental data. The pressure distribution within the models was used to compare the fracture occurrence and location. The spinal levels that sustained vertebral body fracture in the experiment showed higher simulation pressure values in the anterior elements than those in the levels that did not fracture in the reference experiments. Similarly, the spinal levels that sustained posterior element fracture in the experiments showed higher simulation pressure values in the vertebral posterior structures compared to those in the levels that did not sustain fracture. Our study showed that the incorporation of the spinal geometry and orientation could be used to replicate the fracture type and location under dynamic loading. Our results provided an understanding of the lumbar injury mechanisms and knowledge on the load thresholds that could be used for injury prediction with explicit FE lumbar spine models.


Assuntos
Fraturas da Coluna Vertebral , Traumatismos da Coluna Vertebral , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/lesões , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fenômenos Mecânicos , Fenômenos Biomecânicos , Análise de Elementos Finitos
4.
Exp Neurol ; 372: 114620, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38029810

RESUMO

Little evidence exists about how mild traumatic brain injury (mTBI) is affected by commonly encountered exposures of sleep loss, sleep aids, and caffeine that might be potential therapeutic opportunities. In addition, while propofol sedation is administered in severe TBI, its potential utility in mild TBI is unclear. Each of these exposures is known to have pronounced effects on cerebral metabolism and blood flow and neurochemistry. We hypothesized that they each interact with cerebral metabolic dynamics post-injury and change the subclinical characteristics of mTBI. MTBI in rats was produced by head rotational acceleration injury that mimics the biomechanics of human mTBI. Three mTBIs spaced 48 h apart were used to increase the likelihood that vulnerabilities induced by repeated mTBI would be manifested without clinically relevant structural damage. After the third mTBI, rats were immediately sleep deprived or administered caffeine or suvorexant (an orexin antagonist and sleep aid) for the next 24 h or administered propofol for 5 h. Resting state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) were performed 24 h after the third mTBI and again after 30 days to determine changes to the brain mTBI phenotype. Multi-modal analyses on brain regions of interest included measures of functional connectivity and regional homogeneity from rs-fMRI, and mean diffusivity (MD) and fractional anisotropy (FA) from DTI. Each intervention changed the mTBI profile of subclinical effects that presumably underlie healing, compensation, damage, and plasticity. Sleep loss during the acute post-injury period resulted in dramatic changes to functional connectivity. Caffeine, propofol sedation and suvorexant were especially noteworthy for differential effects on microstructure in gray and white matter regions after mTBI. The present results indicate that commonplace exposures and short-term sedation alter the subclinical manifestations of repeated mTBI and therefore likely play roles in symptomatology and vulnerability to damage by repeated mTBI.


Assuntos
Concussão Encefálica , Propofol , Substância Branca , Humanos , Ratos , Animais , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/metabolismo , Imagem de Tensor de Difusão , Cafeína/farmacologia , Cafeína/uso terapêutico , Encéfalo/metabolismo , Substância Branca/patologia , Sono
5.
J Athl Train ; 58(3): 220-223, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35724362

RESUMO

CONTEXT: Increasing attention has been directed toward identifying aspects of football participation for targeted policy change that reduces the concussion risk. Prior researchers evaluated concussion risks during the preseason and regular seasons, leaving the spring season largely unexplored. DESIGN: In this nationally representative observational investigation of 19 National Collegiate Athletic Association Division I collegiate football programs, we assessed concussion rates and head impact exposures during the preseason, regular season, and spring practices from 2014 to 2019. All participating programs recorded the incidence of concussions, and a subset (n = 6) also measured head impact exposures. RESULTS: Analyses by time of year and session type indicated that concussion rates and head impact exposures during all practice sessions and contact practices were higher in the spring and preseason than those in the regular season (P < .05). Concussion rates during the spring season and preseason were statistically similar. CONCLUSIONS: We identified comparable concussion risks in the spring season and preseason, highlighting the need for targeted policy interventions to protect athlete health and safety.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Futebol Americano , Futebol , Humanos , Traumatismos em Atletas/diagnóstico , Traumatismos em Atletas/epidemiologia , Traumatismos em Atletas/complicações , Concussão Encefálica/diagnóstico , Concussão Encefálica/epidemiologia , Concussão Encefálica/etiologia , Incidência , Estações do Ano , Universidades
6.
Behav Brain Res ; 438: 114181, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36330906

RESUMO

Numerous epidemiological studies have found co-morbidity between non-severe traumatic brain injury (TBI) and substance misuse in both civilian and military populations. Preclinical studies have also identified this relationship for some misused substances. We have previously demonstrated that repeated blast traumatic brain injury (rbTBI) increased oxycodone seeking without increasing oxycodone self-administration, suggesting that the neurological sequelae of traumatic brain injury can elevate opioid misuse liability. Here, we determined the chronicity of this effect by testing different durations of time between injury and oxycodone self-administration and durations of abstinence. We found that the subchronic (four weeks), but not the acute (three days) or chronic (four months) duration between injury and oxycodone self-administration was associated with increased drug seeking and re-acquisition of self-administration following a 10-day abstinence. Examination of other abstinence durations (two days, four weeks, or four months) revealed no effect of rbTBI on drug seeking at any of the abstinence durations tested. Together, these data indicate that there is a window of vulnerability after TBI when oxycodone self-administration is associated with elevated drug seeking and relapse-related behaviors.


Assuntos
Lesões Encefálicas Traumáticas , Transtornos Relacionados ao Uso de Opioides , Animais , Ratos , Oxicodona/farmacologia , Oxicodona/uso terapêutico , Ratos Sprague-Dawley , Transtornos Relacionados ao Uso de Opioides/complicações , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Comportamento de Procura de Droga , Autoadministração
7.
J Biomech Eng ; 145(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36301262

RESUMO

Body armor is used to protect the human from penetrating injuries, however, in the process of defeating a projectile, the back face of the armor can deform into the wearer at extremely high rates. This deformation can cause a variety of soft and hard tissue injuries. Finite element modeling (FEM) represents one of the best tools to predict injuries from this high-rate compression mechanism. However, the validity of a model is reliant on accurate material properties for biological tissues. In this study, we measured the stress-strain response of thoraco-abdominal tissue during high-rate compression (1000 and 1900 s-1) using a split Hopkinson pressure bar (SHPB). High-rate material properties of porcine adipose, heart, spleen, and stomach tissue were characterized. At a strain rate of 1000 s-1, adipose (E = 4.7 MPa) had the most compliant stress-strain response, followed by spleen (E = 9.6 MPa), and then heart tissue (E = 13.6 MPa). At a strain rate of 1900 s-1, adipose (E = 7.3 MPa) had the most compliant stress-strain response, followed by spleen (E = 10.7 MPa), heart (E = 14.1 MPa), and stomach (E = 32.6 MPa) tissue. Only adipose tissue demonstrated a consistent rate dependence for these high strain rates, with a stiffer response at 1900 s-1 compared to 1000 s-1. However, comparison of all these tissues to previously published quasi-static and intermediate dynamic experiments revealed a strong rate dependence with increasing stress response from quasi-static to dynamic to high strain rates. Together, these findings can be used to develop a more accurate finite element model of high-rate compression injuries.


Assuntos
Tecido Adiposo , Animais , Suínos , Humanos , Estresse Mecânico , Pressão
8.
Ann Biomed Eng ; 50(11): 1346-1355, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36253602

RESUMO

Head impact measurement devices enable opportunities to collect impact data directly from humans to study topics like concussion biomechanics, head impact exposure and its effects, and concussion risk reduction techniques in sports when paired with other relevant data. With recent advances in head impact measurement devices and cost-effective price points, more and more investigators are using them to study brain health questions. However, as the field's literature grows, the variance in study quality is apparent. This brief paper aims to provide a high-level set of key considerations for the design and analysis of head impact measurement studies that can help avoid flaws introduced by sampling biases, false data, missing data, and confounding factors. We discuss key points through four overarching themes: study design, operational management, data quality, and data analysis.


Assuntos
Concussão Encefálica , Futebol Americano , Humanos , Dispositivos de Proteção da Cabeça , Consenso , Aceleração , Concussão Encefálica/diagnóstico , Cabeça , Fenômenos Biomecânicos
9.
Ann Biomed Eng ; 50(11): 1317-1345, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35920964

RESUMO

The use of head kinematic measurement devices has recently proliferated owing to technology advances that make such measurement more feasible. In parallel, demand to understand the biomechanics of head impacts and injury in sports and the military has increased as the burden of such loading on the brain has received focused attention. As a result, the field has matured to the point of needing methodological guidelines to improve the rigor and consistency of research and reduce the risk of scientific bias. To this end, a diverse group of scientists undertook a comprehensive effort to define current best practices in head kinematic measurement, culminating in a series of manuscripts outlining consensus methodologies and companion summary statements. Summary statements were discussed, revised, and voted upon at the Consensus Head Acceleration Measurement Practices (CHAMP) Conference in March 2022. This manuscript summarizes the motivation and methods of the consensus process and introduces recommended reporting checklists to be used to increase transparency and rigor of future experimental design and publication of work in this field. The checklists provide an accessible means for researchers to apply the best practices summarized in the companion manuscripts when reporting studies utilizing head kinematic measurement in sport and military settings.


Assuntos
Concussão Encefálica , Humanos , Consenso , Revelação , Aceleração , Dispositivos de Proteção da Cabeça , Fenômenos Biomecânicos , Cabeça
10.
Ann Biomed Eng ; 50(11): 1473-1487, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35933459

RESUMO

Sport-related concussions can result from a single high magnitude impact that generates concussive symptoms, repeated subconcussive head impacts aggregating to generate concussive symptoms, or a combined effect from the two mechanisms. The array of symptoms produced by these mechanisms may be clinically interpreted as a sport-related concussion. It was hypothesized that head impact exposure resulting in concussion is influenced by severity, total number, and frequency of subconcussive head impacts. The influence of total number and magnitude of impacts was previously explored, but frequency was investigated to a lesser degree. In this analysis, head impact frequency was investigated over a new metric called 'time delta', the time difference from the first recorded head impact of the day until the concussive impact. Four exposure metrics were analyzed over the time delta to determine whether frequency of head impact exposure was greater for athletes on their concussion date relative to other dates of contact participation. Those metrics included head impact frequency, head impact accrual rate, risk weighted exposure (RWE), and RWE accrual rate. Athletes experienced an elevated median number of impacts, RWE, and RWE accrual rate over the time delta on their concussion date compared to non-injury sessions. This finding suggests elevated frequency of head impact exposure on the concussion date compared to other dates that may precipitate the onset of concussion.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Futebol Americano , Humanos , Futebol Americano/lesões , Concussão Encefálica/diagnóstico , Atletas , Traumatismos em Atletas/diagnóstico
11.
Front Behav Neurosci ; 16: 805124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368301

RESUMO

Repetitive subconcussive head impact exposure has been associated with clinical and MRI changes in some non-concussed contact sport athletes over the course of a season. However, analysis of human tolerance for repeated head impacts is complicated by concussion and head impact exposure history, genetics, and other personal factors. Therefore, the objective of the current study was to develop a rodent model for repetitive subconcussive head impact exposure that can be used to understand injury mechanisms and tolerance in the human. This study incorporated the Medical College of Wisconsin Rotational Injury Model to expose rats to multiple low-level head accelerations per day over a 4-week period. The peak magnitude of head accelerations were scaled from our prior human studies of contact sport athletes and the number of exposures per day were based on the median (moderate exposure) and 95th percentile (high exposure) number of exposures per day across the human sample. Following the exposure protocol, rats were assessed for cognitive deficits, emotional changes, blood serum levels of axonal injury biomarkers, and histopathological evidence of injury. High exposure rats demonstrated cognitive deficits and evidence of anxiety-like behaviors relative to shams. Moderate exposure rats did not demonstrate either of those behaviors. Similarly, high exposure rats had histopathological evidence of gliosis [i.e., elevated Iba1 intensity and glial fibrillary acidic protein (GFAP) volume relative to shams] in the basolateral amygdala and other areas. Blood serum levels of neurofilament light (NFL) demonstrated a dose response relationship with increasing numbers of low-level head acceleration exposures with a higher week-to-week rate of NFL increase for the high exposure group compared to the moderate exposure group. These findings demonstrate a cumulative effect of repeated low-level head accelerations and provide a model that can be used in future studies to better understand mechanisms and tolerance for brain injury resulting from repeated low-level head accelerations, with scalable biomechanics between the rat and human.

12.
Addict Biol ; 27(2): e13134, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35229952

RESUMO

Traumatic brain injury (TBI) and drug addiction are common comorbidities, but it is unknown if the neurological sequelae of TBI contribute to this relationship. We have previously reported elevated oxycodone seeking after drug self-administration in rats that received repeated blast TBI (rbTBI). TBI and exposure to drugs of abuse can each change structural and functional neuroimaging outcomes, but it is unknown if there are interactive effects of injury and drug exposure. To determine the effects of TBI and oxycodone exposure, we subjected rats to rbTBI and oxycodone self-administration and measured drug seeking and several neuroimaging measures. We found interactive effects of rbTBI and oxycodone on fractional anisotropy (FA) in the nucleus accumbens (NAc) and that FA in the medial prefrontal cortex (mPFC) was correlated with drug seeking. We also found an interactive effect of injury and drug on widespread functional connectivity and regional homogeneity of the blood oxygen level dependent (BOLD) response, and that intra-hemispheric functional connectivity in the infralimbic medial prefrontal cortex positively correlated with drug seeking. In conclusion, rbTBI and oxycodone self-administration had interactive effects on structural and functional magnetic resonance imaging (MRI) measures, and correlational effects were found between some of these measures and drug seeking. These data support the hypothesis that TBI and opioid exposure produce neuroadaptations that contribute to addiction liability.


Assuntos
Concussão Encefálica , Oxicodona , Animais , Comportamento de Procura de Droga , Neuroimagem , Oxicodona/farmacologia , Ratos , Autoadministração
13.
Med Sci Sports Exerc ; 54(6): 912-922, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35081093

RESUMO

PURPOSE: Contact sport athletes are exposed to a unique environment where they sustain repeated head impacts throughout the season and can sustain hundreds of head impacts over a few months. Accordingly, recent studies outlined the role that head impact exposure (HIE) has in concussion biomechanics and in the development of cognitive and brain-based changes. Those studies focused on time-bound effects by quantifying exposure leading up to the concussion, or cognitive changes after a season in which athletes had high HIE. However, HIE may have a more prolonged effect. This study identified associations between HIE and concussion incidence during different periods of the college football fall season. METHODS: This study included 1120 athlete seasons from six National Collegiate Athletic Association Division I football programs across 5 yr. Athletes were instrumented with the Head Impact Telemetry System to record daily HIE. The analysis quantified associations of preseason/regular season/total season concussion incidence with HIE during those periods. RESULTS: Strong associations were identified between HIE and concussion incidence during different periods of the season. Preseason HIE was associated with preseason and total season concussion incidence, and total season HIE was associated with total season concussion incidence. CONCLUSIONS: These findings demonstrate a prolonged effect of HIE on concussion risk, wherein elevated preseason HIE was associated with higher concussion risk both during the preseason and throughout the entire fall season. This investigation is the first to provide evidence supporting the hypothesis of a relationship between elevated HIE during the college football preseason and a sustained decreased tolerance for concussion throughout that season.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Futebol Americano , Atletas , Traumatismos em Atletas/epidemiologia , Concussão Encefálica/epidemiologia , Humanos , Incidência , Estações do Ano
14.
JAMA Neurol ; 78(3): 346-350, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523101

RESUMO

Importance: Concussion ranks among the most common injuries in football. Beyond the risks of concussion are growing concerns that repetitive head impact exposure (HIE) may increase risk for long-term neurologic health problems in football players. Objective: To investigate the pattern of concussion incidence and HIE across the football season in collegiate football players. Design, Setting, and Participants: In this observational cohort study conducted from 2015 to 2019 across 6 Division I National Collegiate Athletic Association (NCAA) football programs participating in the Concussion Assessment, Research, and Education (CARE) Consortium, a total of 658 collegiate football players were instrumented with the Head Impact Telemetry (HIT) System (46.5% of 1416 eligible football players enrolled in the CARE Advanced Research Core). Players were prioritized for instrumentation with the HIT System based on their level of participation (ie, starters prioritized over reserves). Exposure: Participation in collegiate football games and practices from 2015 to 2019. Main Outcomes and Measures: Incidence of diagnosed concussion and HIE from the HIT System. Results: Across 5 seasons, 528 684 head impacts recorded from 658 players (all male, mean age [SD], 19.02 [1.25] years) instrumented with the HIT System during football practices or games met quality standards for analysis. Players sustained a median of 415 (interquartile range [IQR], 190-727) recorded head impacts (ie, impacts) per season. Sixty-eight players sustained a diagnosed concussion. In total, 48.5% of concussions (n = 33) occurred during preseason training, despite preseason representing only 20.8% of the football season (0.059 preseason vs 0.016 regular-season concussions per team per day; mean difference, 0.042; 95% CI, 0.020-0.060; P = .001). Total HIE in the preseason occurred at twice the proportion of the regular season (324.9 vs 162.4 impacts per team per day; mean difference, 162.6; 95% CI, 110.9-214.3; P < .001). Every season, HIE per athlete was highest in August (preseason) (median, 146.0 impacts; IQR, 63.0-247.8) and lowest in November (median, 80.0 impacts; IQR, 35.0-148.0). Over 5 seasons, 72% of concussions (n = 49) (game proportion, 0.28; 95% CI, 0.18-0.40; P < .001) and 66.9% of HIE (262.4 practices vs 137.2 games impacts per player; mean difference, 125.3; 95% CI, 110.0-140.6; P < .001) occurred in practice. Even within the regular season, total HIE in practices (median, 175.0 impacts per player per season; IQR, 76.0-340.5) was 84.2% higher than in games (median, 95.0 impacts per player per season; IQR, 32.0-206.0). Conclusions and Relevance: Concussion incidence and HIE among college football players are disproportionately higher in the preseason than regular season, and most concussions and HIE occur during football practices, not games. These data point to a powerful opportunity for policy, education, and other prevention strategies to make the greatest overall reduction in concussion incidence and HIE in college football, particularly during preseason training and football practices throughout the season, without major modification to game play. Strategies to prevent concussion and HIE have important implications to protecting the safety and health of football players at all competitive levels.


Assuntos
Atletas , Pesquisa Biomédica/normas , Concussão Encefálica/epidemiologia , Concussão Encefálica/prevenção & controle , Futebol Americano/lesões , Universidades , Adolescente , Pesquisa Biomédica/métodos , Concussão Encefálica/diagnóstico por imagem , Estudos de Coortes , Humanos , Masculino , Adulto Jovem
15.
Ann Biomed Eng ; 48(11): 2555-2565, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33136240

RESUMO

Identifying the associations between head impact biomechanics and clinical recovery may inform better head impact monitoring procedures and identify athletes who may benefit from early treatments aimed to enhance recovery. The purpose of this study was to test whether head injury biomechanics are associated with clinical recovery of symptom severity, balance, and mental status, as well as symptom resolution time (SRT) and return-to-participation (RTP) time. We studied 45 college American football players (n = 51 concussions) who sustained an incident concussion while participating in a multi-site study. Player race/ethnicity, prior concussion, medical history, position, body mass index, event type, and impact location were covariates in our multivariable analyses. Multivariable negative binomial regression models analyzed associations between our study outcomes and (1) injury-causing linear and rotational head impact severity, (2) season repetitive head impact exposure (RHIE), and (3) injury day RHIE. Median SRT was 6.1 days (IQR 5.8 days, n = 45) and median RTP time was 12.3 days (IQR 7.8 days, n = 36) across our study sample. RTP time was 86% (Ratio 1.86, 95% CI [1.05, 3.28]) longer in athletes with a concussion history. Offensive players had SRTs 49% shorter than defensive players (Ratio 0.51, 95% CI [0.29, 0.92]). Per-unit increases in season RHIE were associated with 22% longer SRT (Ratio 1.22, 95% CI [1.09, 1.36]) but 28% shorter RTP time (Ratio 0.72, 95% CI [0.56, 0.93]). No other head injury biomechanics predicted injury recovery.


Assuntos
Atletas , Traumatismos em Atletas , Concussão Encefálica , Futebol Americano/lesões , Dispositivos de Proteção da Cabeça , Aceleração , Adolescente , Adulto , Traumatismos em Atletas/patologia , Traumatismos em Atletas/fisiopatologia , Traumatismos em Atletas/prevenção & controle , Fenômenos Biomecânicos , Concussão Encefálica/patologia , Concussão Encefálica/fisiopatologia , Concussão Encefálica/prevenção & controle , Humanos , Masculino , Universidades
16.
Med Sci Sports Exerc ; 52(7): 1629-1638, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32541378

RESUMO

INTRODUCTION: Regulatory efforts toward reducing concussion risk have begun to focus on decreasing the number of head impacts (i.e., head impact burden) sustained by athletes in contact sports. To that end, in 2018, the NCAA decreased the number of preseason on-field team activities for Division I teams from 29 to 25. The objective of the current study was to quantify changes in practice schedule and head impact exposure between the 2017 and 2018 football preseasons. METHODS: Athletes from five NCAA Division I football teams (n = 426) were consented and enrolled. RESULTS: On average, athletes participated in 10% fewer contact practices in 2018. However, the effect of this ruling on preseason head impact burden was mixed. Across all athletes, the total preseason head impact burden was essentially the same from 2017 to 2018. However, this study revealed significant team-by-team differences in preseason head impact burden, with one team demonstrating a 35% increase in the average number of recorded head impacts from 2017 to 2018, despite a modest decrease in the number of contact practices. Other teams had similar or decreased head impact burden. CONCLUSIONS: Team-based differences in total preseason head impact burden were attributable to changes in daily practice schedule, with longer practice durations and more intense contact practice sessions contributing to increases in daily head impact exposure that, in turn, led to greater preseason head impact burden. Results of this study have highlighted the difficulty in decreasing contact sport head impact exposure through rule changes targeted at limiting on-field team activities. Future efforts aimed specifically at contact practice duration, daily head impact exposure, or limiting time in specific drills may be more effective at reducing total preseason head impact burden.


Assuntos
Concussão Encefálica/prevenção & controle , Futebol Americano/fisiologia , Cabeça/fisiologia , Condicionamento Físico Humano , Fenômenos Biomecânicos , Concussão Encefálica/fisiopatologia , Humanos , Política Organizacional , Condicionamento Físico Humano/métodos , Condicionamento Físico Humano/fisiologia , Comportamento de Redução do Risco , Esportes , Fatores de Tempo
17.
Ann Biomed Eng ; 47(10): 2073-2085, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31388849

RESUMO

Repetitive head impact exposure sustained by athletes of contact sports has been hypothesized to be a mechanism for concussion and a possible explanation for the high degree of variability in sport-related concussion biomechanics. In an attempt to limit repetitive head impact exposure during the football preseason, the NCAA eliminated two-a-day practices in 2017, while maintaining the total number of team practice sessions. The objective of this study was to quantify head impact exposure during the preseason and regular season in Division I college football athletes to determine whether the 2017 NCAA ruling decreased head impact exposure. 342 unique athletes from five NCAA Division I Football Bowl Subdivision (FBS) programs were consented and enrolled. Head impacts were recorded using the Head Impact Telemetry (HIT) System during the entire fall preseasons and regular seasons in 2016 and 2017. Despite the elimination of two-a-day practices, the number of preseason contact days increased in 2017, with an increase in average hourly impact exposure (i.e., contact intensity), resulting in a significant increase in total head impact burden (+ 26%) for the 2017 preseason. This finding would indicate that the 2017 NCAA ruling was not effective at reducing the head impact burden during the football preseason. Additionally, athletes sustained a significantly higher number of recorded head impacts per week (+ 40%) during the preseason than the regular season, implicating the preseason as a time of elevated repetitive head impact burden. With increased recognition of a possible association between repetitive head impact exposure and concussion, increased preseason exposure may predispose certain athletes to a higher risk of concussion during the preseason and regular season. Accordingly, efforts at reducing concussion incidence in contact sports should include a reduction in overall head impact exposure.


Assuntos
Futebol Americano/fisiologia , Cabeça/fisiologia , Acelerometria , Atletas , Dispositivos de Proteção da Cabeça , Humanos , Telemetria , Universidades
18.
Ann Biomed Eng ; 47(10): 2057-2072, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30362082

RESUMO

Studies of football athletes have implicated repetitive head impact exposure in the onset of cognitive and brain structural changes, even in the absence of diagnosed concussion. Those studies imply accumulating damage from successive head impacts reduces tolerance and increases risk for concussion. Support for this premise is that biomechanics of head impacts resulting in concussion are often not remarkable when compared to impacts sustained by athletes without diagnosed concussion. Accordingly, this analysis quantified repetitive head impact exposure in a cohort of 50 concussed NCAA Division I FBS college football athletes compared to controls that were matched for team and position group. The analysis quantified the number of head impacts and risk weighted exposure both on the day of injury and for the season to the date of injury. 43% of concussed athletes had the most severe head impact exposure on the day of injury compared to their matched control group and 46% of concussed athletes had the most severe head impact exposure for the season to the date of injury compared to their matched control group. When accounting for date of injury or season to date of injury, 72% of all concussed athletes had the most or second most severe head impact exposure compared to their matched control group. These trends associating cumulative head impact exposure with concussion onset were stronger for athletes that participated in a greater number of contact activities. For example, 77% of athletes that participated in ten or more days of contact activities had greater head impact exposure than their matched control group. This unique analysis provided further evidence for the role of repetitive head impact exposure as a predisposing factor for the onset of concussion. The clinical implication of these findings supports contemporary trends of limiting head impact exposure for college football athletes during practice activities in an effort to also reduce risk of concussive injury.


Assuntos
Concussão Encefálica/fisiopatologia , Futebol Americano/lesões , Cabeça/fisiologia , Aceleração , Atletas , Dispositivos de Proteção da Cabeça , Humanos , Masculino , Telemetria , Universidades
19.
Eur J Neurosci ; 50(3): 2101-2112, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30456793

RESUMO

Each year, traumatic brain injuries (TBI) affect millions worldwide. Mild TBIs (mTBI) are the most prevalent and can lead to a range of neurobehavioral problems, including substance abuse. A single blast exposure, inducing mTBI alters the medial prefrontal cortex, an area implicated in addiction, for at least 30 days post injury in rats. Repeated blast exposures result in greater physiological and behavioral dysfunction than single exposure; however, the impact of repeated mTBI on addiction is unknown. In this study, the effect of mTBI on various stages of oxycodone use was examined. Male Sprague Dawley rats were exposed to a blast model of mTBI once per day for 3 days. Rats were trained to self-administer oxycodone during short (2 h) and long (6 h) access sessions. Following abstinence, rats underwent extinction and two cued reinstatement sessions. Sham and rbTBI rats had similar oxycodone intake, extinction responding and cued reinstatement of drug seeking. A second group of rats were trained to self-administer oxycodone with varying reinforcement schedules (fixed ratio (FR)-2 and FR-4). Under an FR-2 schedule, rbTBI-exposed rats earned fewer reinforcers than sham-exposed rats. During 10 extinction sessions, the rbTBI-exposed rats exhibited significantly more seeking for oxycodone than the sham-injured rats. There was a positive correlation between total oxycodone intake and day 1 extinction drug seeking in sham, but not in rbTBI-exposed rats. Together, this suggests that rbTBI-exposed rats are more sensitive to oxycodone-associated cues during reinstatement than sham-exposed rats and that rbTBI may disrupt the relationship between oxycodone intake and seeking.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Comportamento de Procura de Droga/fisiologia , Oxicodona/farmacologia , Autoadministração , Animais , Lesões Encefálicas Traumáticas/complicações , Cocaína/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Esquema de Reforço
20.
Sci Rep ; 8(1): 9941, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29967344

RESUMO

Traumatic brain injury (TBI) commonly results in cognitive and psychiatric problems. Cognitive impairments occur in approximately 30% of patients suffering from mild TBI (mTBI), and correlational evidence from clinical studies indicates that substance abuse may be increased following mTBI. However, understanding the lasting cognitive and psychiatric problems stemming from mTBI is difficult in clinical settings where pre-injury assessment may not be possible or accurate. Therefore, we used a previously characterized blast model of mTBI (bTBI) to examine cognitive- and addiction-related outcomes. We previously demonstrated that this model leads to bilateral damage of the medial prefrontal cortex (mPFC), a region critical for cognitive function and addiction. Rats were exposed to bTBI and tested in operant learning tasks several weeks after injury. bTBI rats made more errors during acquisition of a cue discrimination task compared to sham treated rats. Surprisingly, we observed no differences between groups in set shifting and delayed matching to sample, tasks known to require the mPFC. Separate rats performed cocaine self-administration. No group differences were found in intake or extinction, and only subtle differences were observed in drug-primed reinstatement 3-4 months after injury. These findings indicate that bTBI impairs acquisition of a visual discrimination task and that bTBI does not significantly increase the ability of cocaine exposure to trigger drug seeking.


Assuntos
Traumatismos por Explosões/psicologia , Concussão Encefálica/psicologia , Disfunção Cognitiva/etiologia , Comportamento de Procura de Droga , Percepção Visual , Animais , Traumatismos por Explosões/complicações , Traumatismos por Explosões/fisiopatologia , Concussão Encefálica/complicações , Concussão Encefálica/fisiopatologia , Cocaína , Modelos Animais de Doenças , Masculino , Córtex Pré-Frontal/fisiopatologia , Ratos , Ratos Sprague-Dawley , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...