Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 116(7): 4597-641, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27023340

RESUMO

Other than their established short-chain congeners, polycondensates based on long-chain difunctional monomers are often dominated by the long methylene sequences of the repeat units in their solid-state structures and properties. This places them between traditional polycondensates and polyethylenes. The availability of long-chain monomers as a key prerequisite has benefited much from advances in the catalytic conversion of plant oils, via biotechnological and purely chemical approaches, likewise. This has promoted studies of, among others, applications-relevant properties. A comprehensive account is given of long-chain monomer syntheses and the preparation and physical properties, morphologies, mechanical behavior, and degradability of long-chain polyester, polyamides, polyurethanes, polyureas, polyacetals, and polycarbonates.

2.
ChemSusChem ; 7(12): 3491-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25314333

RESUMO

The 1,2-(CH2 P(1-adamantyl)2 )2 C6 H4 (dadpx) coordinated palladium complex [(dadpx)Pd(OTf)2 ] (1) is a catalyst precursor for the isomerizing methoxycarbonylation of the internal double bond of methyl oleate, with an unprecedented selectivity (96 %) for the linear diester 1,19-dimethyl nonadecanedioate. Rapid formation of the catalytically active solvent-coordinated hydride species [(dadpx)PdH(MeOH)](+) (3-MeOH) is evidenced by NMR spectroscopy, and further isolation and X-ray crystal structure analysis of [(dadpx)PdH(PPh3 )](+) (3-PPh3 ). DFT calculations of key steps of the catalytic cycle unravel methanolysis as the decisive step for enhanced selectivity and the influence of the rigid adamantyl framework on this step by destabilization of transition states of unselective pathways.


Assuntos
Óleos de Plantas/química , Cristalografia por Raios X , Isomerismo
3.
Angew Chem Int Ed Engl ; 53(26): 6800-4, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24845347

RESUMO

Current efforts to technically use microalgae focus on the generation of fuels with a molecular structure identical to crude oil based products. Here we suggest a different approach for the utilization of algae by translating the unique molecular structures of algae oil fatty acids into higher value chemical intermediates and materials. A crude extract from a microalga, the diatom Phaeodactylum tricornutum, was obtained as a multicomponent mixture containing amongst others unsaturated fatty acid (16:1, 18:1, and 20:5) phosphocholine triglycerides. Exposure of this crude algae oil to CO and methanol with the known catalyst precursor [{1,2-(tBu2 PCH2)2C6H4}Pd(OTf)](OTf) resulted in isomerization/methoxycarbonylation of the unsaturated fatty acids into a mixture of linear 1,17- and 1,19-diesters in high purity (>99 %). Polycondensation with a mixture of the corresponding diols yielded a novel mixed polyester-17/19.17/19 with an advantageously high melting and crystallization temperature.


Assuntos
Óleos/química , Poliésteres/síntese química , Monóxido de Carbono/química , Catálise , Complexos de Coordenação/química , Ácidos Graxos Insaturados/química , Isomerismo , Metanol/química , Microalgas/metabolismo , Paládio/química , Poliésteres/química
4.
Chemistry ; 19(50): 17131-40, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24259438

RESUMO

The synthesis of unsymmetrical diphosphine ligands (3a-g) with an o-tolyl backbone and tert-butyl, adamantyl, cyclohexyl and isopropyl substituents on the phosphorus moiety is described (1,2-(CH2PR2)(PR'2)C6H4; 3a: R=tBu, R'=tBu, 3b: R=tBu, R'=Cy, 3c: R=tBu, R'=iPr, 3d: R=Ad, R'=tBu, 3e: R=Ad, R'=Cy, 3f: R=Cy, R'=Cy, 3g: R=Ad, R'=Ad). The corresponding diphosphine-Pd(II) ditriflate complexes [(P^P)Pd(OTf)2] (5a-g) were prepared and structurally characterised by X-ray crystallography. These new complexes were studied as catalyst precursors in the isomerising methoxycarbonylation of methyl oleate, and were found to convert methyl oleate into the corresponding linear α,ω-diester (L) with 70-80% selectivity. The products of this catalytic reaction with the known [{1,2-(tBu2PCH2)2C6H4}Pd(OTf)2] complex (5h) were fully analysed, and revealed the formation of the linear α,ω-diester (L, 89.0%), the methyl-branched diester B1 (4.3%), the ethyl-branched diester B2 (1.0%), the propyl-branched diester B3 (0.6%) and all diesters from butyl- to hexadecyl-branched diesters B4-B16 (overall 4.8%) at 90 °C and 20 bar CO. The productivity of the catalytic conversion of methyl oleate with complexes 5a-g varied with the steric bulk of the alkyl substituent on the phosphorus. Ligands with more bulky groups, like tert-butyl or adamantyl (e.g., 5a, 5d, 5g), were more productive systems. The formation of the catalytically active hydride species [(P^P)Pd(H)(MeOH)](+) (6-MeOH) was investigated and observed directly for complexes 5a-e and 5g, respectively. These hydride species were isolated as the corresponding triphenylphosphine complexes (6-PPh3) and fully characterised, including by X-ray crystallography. The catalytic productivity of 6a-PPh3 was virtually identical to that of 5a, thereby confirming the efficient hydride formation of 5a under catalytic conditions.

5.
Macromol Rapid Commun ; 34(1): 47-50, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23161497

RESUMO

Self-metathesis of erucic acid by [(PCy(3))(η-C-C(3)H(4)N(2)Mes(2))Cl(2)Ru = CHPh] (Grubbs second- generation catalyst) followed by catalytic hydrogenation and purification via the ester yields 1,26-hexacosanedioate (>99% purity). Polyesterification with 1,26-hexacosanediol, generated from the diester, affords polyester-26,26, which features a T(m) of 114 °C (T(c) = 92 °C, ΔH(m) = 160 J g(-1)). Ultralong-chain model polyesters-38,23 (T(m) = 109 °C) and -44,23 (T(m) = 111 °C), generated via multistep procedures including acyclic diene metathesis polymerization, underline that melting points of such aliphatic polyesters do not gradually increase with methylene sequence chain length. Available data suggest that to mimic linear polyethylenes thermal properties, even longer sequences, amounting to at least four times a fatty acid chain, fully incorporated in a linear fashion are required.


Assuntos
Poliésteres/química , Polietileno/química , Ácidos Erúcicos/química , Hidrogenação , Modelos Químicos , Poliésteres/síntese química , Polietileno/síntese química , Polimerização , Temperatura de Transição
6.
Macromol Rapid Commun ; 33(13): 1126-9, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22648983

RESUMO

Plant oil-derived α,ω-diacetals are polycondensated to the novel polyacetals [OCH(2) O(CH(2))(y)](n) (y = 19 and 23) with molecular weight of ca. M(n) = 2 × 10(4) g mol(-1). The long methylene sequences provide substantial melt and crystallization temperatures (T(m) = 88 °C and T(c) = 68 °C for y = 23), and rates of hydrolytic degradation are dramatically lower for the long-chain polyacetals versus a shorter chain analogue (y = 12) studied for comparison.


Assuntos
Acetais/síntese química , Óleos de Plantas/química , Polímeros/síntese química , Acetais/química , Cinética , Estrutura Molecular , Polimerização , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...