Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(8): e0255337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34432807

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is the third leading cause of mortality in the United States; however, COPD has heterogeneous clinical phenotypes. This is the first large scale attempt which uses transcriptomics, proteomics, and metabolomics (multi-omics) to determine whether there are molecularly defined clusters with distinct clinical phenotypes that may underlie the clinical heterogeneity. Subjects included 3,278 subjects from the COPDGene cohort with at least one of the following profiles: whole blood transcriptomes (2,650 subjects); plasma proteomes (1,013 subjects); and plasma metabolomes (1,136 subjects). 489 subjects had all three contemporaneous -omics profiles. Autoencoder embeddings were performed individually for each -omics dataset. Embeddings underwent subspace clustering using MineClus, either individually by -omics or combined, followed by recursive feature selection based on Support Vector Machines. Clusters were tested for associations with clinical variables. Optimal single -omics clustering typically resulted in two clusters. Although there was overlap for individual -omics cluster membership, each -omics cluster tended to be defined by unique molecular pathways. For example, prominent molecular features of the metabolome-based clustering included sphingomyelin, while key molecular features of the transcriptome-based clusters were related to immune and bacterial responses. We also found that when we integrated the -omics data at a later stage, we identified subtypes that varied based on age, severity of disease, in addition to diffusing capacity of the lungs for carbon monoxide, and precent on atrial fibrillation. In contrast, when we integrated the -omics data at an earlier stage by treating all data sets equally, there were no clinical differences between subtypes. Similar to clinical clustering, which has revealed multiple heterogenous clinical phenotypes, we show that transcriptomics, proteomics, and metabolomics tend to define clusters of COPD patients with different clinical characteristics. Thus, integrating these different -omics data sets affords additional insight into the molecular nature of COPD and its heterogeneity.


Assuntos
Perfilação da Expressão Gênica/métodos , Metabolômica/métodos , Proteômica/métodos , Doença Pulmonar Obstrutiva Crônica/classificação , Fatores Etários , Idoso , Análise por Conglomerados , Bases de Dados Factuais , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/genética , Máquina de Vetores de Suporte
2.
Nat Commun ; 12(1): 1652, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712618

RESUMO

Annotation of polyadenylation sites from short-read RNA sequencing alone is a challenging computational task. Other algorithms rooted in DNA sequence predict potential polyadenylation sites; however, in vivo expression of a particular site varies based on a myriad of conditions. Here, we introduce aptardi (alternative polyadenylation transcriptome analysis from RNA-Seq data and DNA sequence information), which leverages both DNA sequence and RNA sequencing in a machine learning paradigm to predict expressed polyadenylation sites. Specifically, as input aptardi takes DNA nucleotide sequence, genome-aligned RNA-Seq data, and an initial transcriptome. The program evaluates these initial transcripts to identify expressed polyadenylation sites in the biological sample and refines transcript 3'-ends accordingly. The average precision of the aptardi model is twice that of a standard transcriptome assembler. In particular, the recall of the aptardi model (the proportion of true polyadenylation sites detected by the algorithm) is improved by over three-fold. Also, the model-trained using the Human Brain Reference RNA commercial standard-performs well when applied to RNA-sequencing samples from different tissues and different mammalian species. Finally, aptardi's input is simple to compile and its output is easily amenable to downstream analyses such as quantitation and differential expression.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Poliadenilação , Transcriptoma , Animais , Sequência de Bases , Perfilação da Expressão Gênica , Humanos , RNA/química , RNA/metabolismo , Análise de Sequência de RNA , Biologia de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...