Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Front Immunol ; 13: 845499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464394

RESUMO

Therapeutic targeting of inhibitory checkpoint molecules in combination with chimeric antigen receptor (CAR) T cells is currently investigated in a variety of clinical studies for treatment of hematologic and solid malignancies. However, the impact of co-inhibitory axes and their therapeutic implication remains understudied for the majority of acute leukemias due to their low immunogenicity/mutational load. The inhibitory exhaustion molecule TIM-3 is an important marker for the interaction of T cells with leukemic cells. Moreover, inhibitory signals from malignant cells could be transformed into stimulatory signals by synthetic fusion molecules with extracellular inhibitory receptors fused to an intracellular stimulatory domain. Here, we designed a variety of different TIM-3-CD28 fusion proteins to turn inhibitory signals derived by TIM-3 engagement into T-cell activation through CD28. In the absence of anti-CD19 CAR, two TIM-3-CD28 fusion receptors with large parts of CD28 showed strongest responses in terms of cytokine secretion and proliferation upon stimulation with anti-CD3 antibodies compared to controls. We then combined these two novel TIM-3-CD28 fusion proteins with first- and second-generation anti-CD19 CAR T cells and found that the fusion receptor can increase proliferation, activation, and cytotoxic capacity of conventional anti-CD19 CAR T cells. These additionally armed CAR T cells showed excellent effector function. In terms of safety considerations, the fusion receptors showed exclusively increased cytokine release, when the CAR target CD19 was present. We conclude that combining checkpoint fusion proteins with anti-CD19 CARs has the potential to increase T-cell proliferation capacity with the intention to overcome inhibitory signals during the response against malignant cells.


Assuntos
Antígenos CD28 , Imunoterapia Adotiva , Antígenos CD19 , Citocinas/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Linfócitos T
2.
Clin Transl Immunology ; 11(1): e1372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35106156

RESUMO

OBJECTIVES: Exploiting the forces of human T cells for treatment has led to the current paradigm of emerging immunotherapy strategies. Genetic engineering of the T-cell receptor (TCR) redirects specificity, ablates alloreactivity and brings significant progress and off-the-shelf options to emerging adoptive T-cell transfer (ACT) approaches. Targeted CRISPR/Cas9-mediated double-strand breaks in the DNA enable knockout or knock-in engineering. METHODS: Here, we perform CRISPR/Cas9-mediated TCR knockout using a therapeutically relevant ribonucleoprotein (RNP) delivery method to assess the safety of genetically engineered T-cell products. Whole-genome sequencing was performed to analyse whether CRISPR/Cas9-mediated DNA double-strand break at the TCR locus is associated with off-target events in human primary T cells. RESULTS: TCRα chain and TCRß chain knockout leads to high on-target InDel frequency and functional knockout. None of the predicted off-target sites could be confirmed experimentally, whereas whole-genome sequencing and manual Integrative Genomics Viewer (IGV) review revealed 9 potential low-frequency off-target events genome-wide. Subsequent amplification and targeted deep sequencing in 7 of 7 evaluable loci did not confirm these low-frequency InDels. Therefore, off-target events are unlikely to be caused by the CRISPR/Cas9 engineering. CONCLUSION: The combinatorial approach of whole-genome sequencing and targeted deep sequencing confirmed highly specific genetic engineering using CRISPR/Cas9-mediated TCR knockout without potentially harmful exonic off-target effects.

4.
Blood ; 137(8): 1037-1049, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33094319

RESUMO

Emerging immunotherapies such as chimeric antigen receptor T cells have advanced the treatment of acute lymphoblastic leukemia. In contrast, long-term control of acute myeloid leukemia (AML) cannot be achieved by single lineage-specific targeting while sparing benign hematopoiesis. In addition, heterogeneity of AML warrants combinatorial targeting, and several suitable immunotargets (HAVCR2/CD33 and HAVCR2/CLEC12A) have been identified in adult AML. However, clinical and biologic characteristics of AML differ between children and the elderly. Here, we analyzed 36 bone marrow (BM) samples of pediatric AML patients and 13 age-matched healthy donors using whole RNA sequencing of sorted CD45dim and CD34+CD38-CD45dim BM populations and flow cytometry for surface expression of putative target antigens. Pediatric AML clusters apart from healthy myeloid BM precursors in principal-component analysis. Known immunotargets of adult AML, such as IL3RA, were not overexpressed in pediatric AML compared with healthy precursors by RNA sequencing. CD33 and CLEC12A were the most upregulated immunotargets on the RNA level and showed the highest surface expression on AML detected by flow cytometry. KMT2A-mutated infant AML clusters separately by RNA sequencing and overexpresses FLT3, and hence, CD33/FLT3 cotargeting is an additional specific option for this subgroup. CLEC12A and CD33/CLEC12Adouble-positive expression was absent in CD34+CD38-CD45RA-CD90+ hematopoietic stem cells (HSCs) and nonhematopoietic tissue, while CD33 and FLT3 are expressed on HSCs. In summary, we show that expression of immunotargets in pediatric AML differs from known expression profiles in adult AML. We identify CLEC12A and CD33 as preferential generic combinatorial immunotargets in pediatric AML and CD33 and FLT3 as immunotargets specific for KMT2A-mutated infant AML.


Assuntos
Regulação Leucêmica da Expressão Gênica , Lectinas Tipo C/genética , Leucemia Mieloide Aguda/genética , Receptores Mitogênicos/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Imunoterapia , Lactente , Lectinas Tipo C/imunologia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Masculino , Receptores Mitogênicos/imunologia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Transcriptoma , Regulação para Cima
5.
J Immunother Cancer ; 8(2)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32938628

RESUMO

BACKGROUND: Relapsed/refractory B-precursor acute lymphoblastic leukemia (BCP-ALL) remains a major therapeutic challenge in pediatric hematology. Chimeric antigen receptor (CAR) T cells targeting CD19 have shown remarkable initial response rates in BCP-ALL patients, while long-term leukemia control rate is only about 50%. So far, main mechanisms of BCP-ALL relapse after CD19-CAR T-cell therapy have been either insufficient CAR T-cell persistence in vivo or loss of surface CD19. CASE REPORT: Here, we report an exceptional presentation of BCP-ALL relapse in the eye during the systemic control through CAR T-cell therapy. We report a case of fatal intraocular relapse in a pediatric patient with pro-B-ALL after initial response to CD19-CAR T-cell therapy. One month after CD19-CAR T-cell therapy, remission was documented by bone marrow aspirate analysis with absence of CD19+ cells and CD19-CAR T cells could be detected in both peripheral blood and bone marrow. At the same time, however, the patient presented with progressive visual disturbance and CD19+ cells were found within the anterior chamber of the eye. Despite local and systemic therapy, ocular relapse led to BCP-ALL dissemination and systemic relapse within weeks. The eye represents a rare site for local manifestation of BCP-ALL, but isolated intraocular relapse is a clinically unreckoned presentation of BCP-ALL in the era of CD19-CAR T cells. CONCLUSION: During systemic control of BCP-ALL through CD19-CAR T cells, relapse can emerge in the eye as an immune-privileged organ. Ocular symptoms after CD19-CAR T-cell therapy should guide the clinician to elucidate the etiology in a timely fashion in order to adjust leukemia treatment strategy. Both, local immune escape as well as insufficient CAR T-cell persistence may have contributed to relapse in the reported patient. Mechanisms of relapse in an immune desert under CAR T-cell therapy require future clinical and experimental attention. In particular, ocular symptoms after CAR T-cell therapy should be considered a potentially early sign of leukemia relapse.


Assuntos
Antígenos CD19/metabolismo , Oftalmopatias/etiologia , Leucemia/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/complicações , Receptores de Antígenos Quiméricos/metabolismo , Pré-Escolar , Oftalmopatias/patologia , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia
6.
Blood ; 136(12): 1407-1418, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32483603

RESUMO

Anti-CD19 chimeric antigen receptor (CAR) T cells showed significant antileukemic activity in B-precursor acute lymphoblastic leukemia (ALL). Allogeneic, HLA-mismatched off-the-shelf third-party donors may offer ideal fitness of the effector cells, but carry the risk of graft-versus-host disease. Knockout (KO) of the endogenous T-cell receptor (TCR) in CD19-CAR-T cells may be a promising solution. Here, we induced a CRISPR/Cas9-mediated KO of the TCRß chain in combination with a second-generation retroviral CAR transduction including a 4-1BB costimulatory domain in primary T cells. This tandem engineering led to a highly functional population of TCR-KO-CAR-T cells with strong activation (CD25, interferon γ), proliferation, and specific killing upon CD19 target recognition. TCR-KO-CAR-T cells had a balanced phenotype of central memory and effector memory T cells. KO of the endogenous TCR in T cells strongly ablated alloreactivity in comparison with TCR-expressing T cells. In a patient-derived xenograft model of childhood ALL, TCR-KO-CAR-T cells clearly controlled CD19+ leukemia burden and improved survival in vivo. However, coexpression of endogenous TCR plus CAR led to superior persistence of T cells and significantly prolonged leukemia control in vivo, confirmed by a second in vivo model using the leukemia cell line NALM6. These results point toward an essential role of the endogenous TCR for longevity of the response at the price of alloreactivity. In conclusion, anti-CD19 CAR T cells with a CRISPR/Cas9-mediated TCR-KO are promising candidates for nonmatched third-party adoptive T-cell transfer with high antileukemic functionality in the absence of alloreactivity, but long-term persistence in vivo is better in the presence of the endogenous TCR.


Assuntos
Sistemas CRISPR-Cas , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptores de Antígenos de Linfócitos T/genética , Transdução Genética , Células Tumorais Cultivadas
7.
Leukemia ; 34(10): 2607-2620, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32203137

RESUMO

Interaction of malignancies with tissue-specific immune cells has gained interest for prognosis and intervention of emerging immunotherapies. We analyzed bone marrow T cells (bmT) as tumor-infiltrating lymphocytes in pediatric precursor-B cell acute lymphoblastic leukemia (ALL). Based on data from 100 patients, we show that ALL is associated with late-stage CD4+ phenotype and loss of early CD8+ T cells. The inhibitory exhaustion marker TIM-3 on CD4+ bmT increased relapse risk (RFS = 94.6/70.3%) confirmed by multivariate analysis. The hazard ratio of TIM-3 expression nearly reached the hazard ratio of MRD (7.1 vs. 8.0) indicating that patients with a high frequency of TIM-3+CD4+ bone marrow T cells at initial diagnosis have a 7.1-fold increased risk to develop ALL relapse. Comparison of wild type primary T cells to CRISPR/Cas9-mediated TIM-3 knockout and TIM-3 overexpression confirmed the negative effect of TIM-3 on T cell responses against ALL. TIM-3+CD4+ bmT are increased in ALL overexpressing CD200, that leads to dysfunctional antileukemic T cell responses. In conclusion, TIM-3-mediated interaction between bmT and leukemia cells is shown as a strong risk factor for relapse in pediatric B-lineage ALL. CD200/TIM-3-signaling, rather than PD-1/PD-L1, is uncovered as a mechanism of T cell dysfunction in ALL with major implication for future immunotherapies.


Assuntos
Células da Medula Óssea/imunologia , Antígenos CD4/imunologia , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Adolescente , Biomarcadores Tumorais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Prognóstico , Recidiva , Fatores de Risco
8.
Cancer Immunol Immunother ; 67(7): 1053-1066, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29605883

RESUMO

Relapsed/refractory B-precursor acute lymphoblastic leukemia (pre-B ALL) remains a major therapeutic challenge. Chimeric antigen receptor (CAR) T cells are promising treatment options. Central memory T cells (Tcm) and stem cell-like memory T cells (Tscm) are known to promote sustained proliferation and persistence after T-cell therapy, constituting essential preconditions for treatment efficacy. Therefore, we set up a protocol for anti-CD19 CAR T-cell generation aiming at high Tcm/Tscm numbers. 100 ml peripheral blood from pediatric pre-B ALL patients was processed including CD4+/CD8+-separation, T-cell activation with modified anti-CD3/-CD28 reagents and transduction with a 4-1BB-based second generation CAR lentiviral vector. The process was performed on a closed, automated device requiring additional manual/open steps under clean room conditions. The clinical situation of these critically ill and refractory patients with leukemia leads to inconsistent cellular compositions at start of the procedure including high blast counts and low T-cell numbers with exhausted phenotype. Nevertheless, a robust T-cell product was achieved (mean CD4+ = 50%, CD8+ = 39%, transduction = 27%, Tcm = 50%, Tscm = 46%). Strong proliferative potential (up to > 100-fold), specific cytotoxicity and low expression of co-inhibitory molecules were documented. CAR T cells significantly released TH1 cytokines IFN-γ, TNF-α and IL-2 upon target-recognition. In conclusion, partly automated GMP-generation of CAR T cells from critically small blood samples was feasible with a new stimulation protocol that leads to high functionality and expansion potential, balanced CD4/CD8 ratios and a conversion to a Tcm/Tscm phenotype.


Assuntos
Antígenos CD19/metabolismo , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD8-Positivos/transplante , Memória Imunológica/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Células-Tronco/imunologia , Adolescente , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Citotoxicidade Imunológica , Feminino , Humanos , Imunoterapia Adotiva , Ativação Linfocitária , Fenótipo , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...