Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22281636

RESUMO

To provide insight into the long-term immune response following bivalent vaccines, we sampled vaccinated patients simultaneously co-infected with Delta and BA.1. We reported that simultaneous exposure to the Delta and BA.1 S protein does not confer an additional immune advantage compared to exposure to the Omicron BA.1 S protein alone.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21262475

RESUMO

With the availability of vaccines, commercial assays detecting anti-SARS-CoV-2 antibodies (Ab) evolved towards quantitative assays directed to the spike glycoprotein or its receptor binding domain (RBD). The main objective of the present study was to compare the Ab titers obtained with quantitative commercial binding Ab assays, after 1 dose (convalescent individuals) or 2 doses (naive individuals) of vaccine, in healthcare workers (HCW). Antibody titers were measured in 255 sera (from 150 HCW) with 5 quantitative immunoassays (Abbott RBD IgG II quant, bioMerieux RBD IgG, DiaSorin Trimeric spike IgG, Siemens Healthineers RBD IgG, Wantai RBD IgG). One qualitative total antibody anti RBD detection assay (Wantai) was used to detect previous infection before vaccination. The results are presented in binding Ab units (BAU)/mL after application, when possible, of a conversion factor provided by the manufacturers and established from a World Health Organization (WHO) internal standard. There was a 100% seroconversion with all assays evaluated after two doses of vaccine. With assays allowing BAU/ml correction, Ab titers were correlated (Pearson correlation coefficient, {rho}, range: 0.85-0.94). The titer differences varied by a mean of 10.6% between Siemens and bioMerieux assays to 60.9% between Abbott and DiaSorin assays. These results underline the importance of BAU conversion for the comparison of Ab titer obtained with the different quantitative assays. However, significant differences persist, notably, between kits detecting Ab against the different antigens. A true standardization of the assays would be to include the International Standard in the calibration of each assays to express the results in IU/mL.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256578

RESUMO

BackgroundSARS-CoV-2 mutations appeared recently and can lead to conformational changes in the spike protein and probably induce modifications in antigenicity. In this study, we wanted to assess the neutralizing capacity of antibodies to prevent cell infection, using a live virus neutralisation test. MethodsSera samples were collected from different populations: two-dose vaccinated COVID-19-naive healthcare workers (HCWs; Pfizer-BioNTech BNT161b2), 6-months post mild COVID-19 HCWs, and critical COVID-19 patients. We tested various clades such as 19A (initial one), 20B (B.1.1.241 lineage), 20I/501Y.V1 (B.1.1.7 lineage), and 20H/501Y.V2 (B.1.351 lineage). ResultsNo significant difference was observed between the 20B and 19A isolates for HCWs with mild COVID-19 and critical patients. However, a significant decrease in neutralisation ability was found for 20I/501Y.V1 in comparison with 19A isolate for critical patients and HCWs 6-months post infection. Concerning 20H/501Y.V2, all populations had a significant reduction in neutralising antibody titres in comparison with the 19A isolate. Interestingly, a significant difference in neutralisation capacity was observed for vaccinated HCWs between the two variants whereas it was not significant for the convalescent groups. ConclusionNeutralisation capacity was slightly reduced for critical patients and HCWs 6-months post infection. No neutralisation escape could be feared concerning the two variants of concern in both populations. The reduced neutralising response observed towards the 20H/501Y.V2 in comparison with the 19A and 20I/501Y.V1 isolates in fully immunized subjects with the BNT162b2 vaccine is a striking finding of the study.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20182493

RESUMO

Understanding the immune responses elicited by SARS-CoV-2 infection is critical in terms of protection from re-infection and, thus, for public health policy and for vaccine development against the COVID-19. Here, using either live SARS-CoV-2 particles or retroviruses pseudotyped with the SARS-CoV-2 S viral surface protein (Spike), we studied the neutralizing antibody (nAb) response in serum specimens from a cohort of 140 SARS-CoV-2 qPCR-confirmed patients, including patient with mild symptoms but also more severe form including those that require intensive care. We show that nAb titers were strongly correlated with disease severity and with anti-Spike IgG levels. Indeed, patients from intensive care units exhibited high nAb titers, whereas patients with milder disease symptoms displayed heterogenous nAb titers and asymptomatic or exclusive outpatient care patients had no or poor nAb levels. We found that the nAb activity in SARS-CoV-2-infected patients displayed a relatively rapid decline after recovery, as compared to individuals infected with alternative coronaviruses. We show the absence of cross-neutralization between endemic coronaviruses and SARS-CoV-2, indicating that previous infection by human coronaviruses may not generate protective nAb against SARS-CoV-2 infection. Finally, we found that the D614G mutation in the Spike protein, which has recently been identified as the major variant now found in Europe, does not allow neutralization escape. Altogether, our results contribute to the understanding of the immune correlate of SARS-CoV-2 induced disease and claim for a rapid evaluation of the role of the humoral response in the pathogenesis of SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...