Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-517619

RESUMO

The current study was initiated when our specific pathogen-free laboratory toms developed unexpectedly high levels of cross-reactive antibodies to human SARS-CoV-2 (SCoV2) receptor binding domain (RBD) upon mating with feline coronavirus (FCoV)-positive queens. Multi-sequence alignment analyses of SCoV2 Wuhan RBD and four strains each from FCoV serotypes 1 and 2 (FCoV1, FCoV2) demonstrated amino acid sequence identity of 11.5% and similarity of 31.8% with FCoV1 RBD, as well as 12.2% identity and 36.5% similarity for FCoV2 RBD. The sera from all three toms and three mated queens cross-reacted with SCoV2 RBD and reacted with FCoV1 RBD and FCoV2 spike-2, nucleocapsid, and membrane proteins of FCoV2 whole-virus, but not with FCoV2 RBD. Additionally, the plasma from all six FCoV2-inoculated laboratory cats reacted with FCoV2 and SCoV2 RBDs, but not with FCoV1 RBD. In another study, eight group-housed laboratory cats from a different lineage had a range of serum cross-reactivity to SCoV2 RBD even 15 months later. Such cross-reactivity was also observed in FCoV1-positive group-housed pet cats. The SCoV2 RBD at a high non-toxic dose and FCoV2 RBD at a 60-400-fold lower dose blocked the in vitro FCoV2 infection of the feline cells, demonstrating their close structural conformations essential as vaccine immunogens. Furthermore, such cross-reactivity to SCoV2 RBD was also detected by the peripheral blood mononuclear cells of both transient and chronically FCoV1-infected cats. Overall, the cross-reactivity with SCoV2 RBD by the sera from both serotypes of FCoV-infected cats also suggests that the cross-reactive epitope(s) on FCoV1 and FCoV2 RBDs may be similar to those of SCoV2 RBD and provides essential insights to developing a pan-CoV vaccine. Author SummaryTo date, there are no reports on the sera from feline coronavirus (FCoV)-infected cats cross-reacting with either SARS-CoV-1 or SARS-CoV2 (SCoV2) receptor binding domains (RBDs). This report describes the presence of cross-reactive antibodies to SCoV2 RBD in the sera of FCoV-infected laboratory cats, even though SCoV2 RBD and each FCoV serotype (FCoV1, FCoV2) RBD had minimal sequence similarity. However, this observation of serum cross-reactivity to SCoV2 RBD was confirmed by more stringent antibody-based assays and viral assays. Furthermore, both serotypes of FCoV-infected cats, including FCoV1-infected pet cats, produced the cross-reactive antibodies, and such cross-reactivity to SCoV2 RBD was also detected, most likely, by the T cells in peripheral blood mononuclear cells of both transient and chronically FCoV1-infected cats. Since SCoV2 RBD is essential component for current vaccines against COVID-19 disease, our findings should provide essential insights to developing a pan-coronavirus vaccine that induces full-scale immunity to completely prevent SCoV2 infection in humans and pet animals.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21249279

RESUMO

The SARS-CoV-2 pandemic and the vaccination effort that is ongoing has created an unmet need for accessible, affordable, flexible and precise platforms for monitoring the induction, specificity and maintenance of virus-specific immune responses. Herein we validate a multiplex (Luminex-based) assay capable of detecting SARS-CoV-2-specific antibodies irrespective of host species, antibody isotype, and specimen type (e.g. plasma, serum, saliva or blood spots). The well-established precision of Luminex-based assays provides the ability to follow changes in antibody levels over time to many antigens, including multiple permutations of the most common SARS-CoV-2 antigens. This platform can easily measure antibodies known to correlate with neutralization activity as well as multiple non-SARS-CoV-2 antigens such as vaccines (e.g. Tetanus toxoid) or those from frequently encountered agents (influenza), which serve as stable reference points for quantifying the changing SARS-specific responses. All of the antigens utilized in our study can be made in-house, many in E. coli using readily available plasmids. Commercially sourced antigens may also be incorporated and newly available antigen variants can be rapidly produced and integrated, making the platform adaptable to the evolving viral strains in this pandemic. Brief SummaryA multi-antigen assay for monitoring SARS-CoV-2-specific antibodies irrespective of host species, antibody isotype, and specimen type was developed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA