Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 523, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082293

RESUMO

Pollen is a unique vehicle for viral spread. Pollen-associated viruses hitchhike on or within pollen grains and are transported to other plants by pollinators. They are deposited on flowers and have a direct pathway into the plant and next generation via seeds. To discover the diversity of pollen-associated viruses and identify contributing landscape and floral features, we perform a species-level metagenomic survey of pollen from wild, visually asymptomatic plants, located in one of four regions in the United States of America varying in land use. We identify many known and novel pollen-associated viruses, half belonging to the Bromoviridae, Partitiviridae, and Secoviridae viral families, but many families are represented. Across the regions, species harbor more viruses when surrounded by less natural and more human-modified environments than the reverse, but we note that other region-level differences may also covary with this. When examining the novel connection between virus richness and floral traits, we find that species with multiple, bilaterally symmetric flowers and smaller, spikier pollen harbored more viruses than those with opposite traits. The association of viral diversity with floral traits highlights the need to incorporate plant-pollinator interactions as a driver of pollen-associated virus transport into the study of plant-viral interactions.


Assuntos
Fenótipo , Plantas/virologia , Pólen/virologia , Viroma , Sequência de Aminoácidos , Animais , Ecologia , Flores , Genoma Viral , Filogenia , Polinização , Sementes , Viroma/genética , Vírus/classificação , Vírus/genética
2.
New Phytol ; 224(3): 1012-1020, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31442301

RESUMO

The flower is the hallmark of angiosperms and its evolution is key to their diversification. As knowledge of ecological interactions between flowers and their microbial communities (the anthosphere) expands, it becomes increasingly important to consider the evolutionary impacts of these associations and their potential eco-evolutionary dynamics. In this Viewpoint we synthesize current knowledge of the anthosphere within a multilevel selection framework and illustrate the potential for the extended floral phenotype (the phenotype expressed from the genes of the plant and its associated flower microbes) to evolve. We argue that flower microbes are an important, but understudied, axis of variation that shape floral trait evolution and angiosperm reproductive ecology. We highlight knowledge gaps and discuss approaches that are critical for gaining a deeper understanding of the role microbes play in mediating plant reproduction, ecology, and evolution.


Assuntos
Bactérias/metabolismo , Evolução Biológica , Flores/fisiologia , Modelos Biológicos , Fenótipo , Seleção Genética
3.
Am J Bot ; 102(6): 910-20, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26101417

RESUMO

PREMISE OF THE STUDY: The sunflower genus Helianthus has long been recognized as economically significant, containing species of agricultural and horticultural importance. Additionally, this genus displays a large range of phenotypic and genetic variation, making Helianthus a useful system for studying evolutionary and ecological processes. Here we present the most robust Helianthus phylogeny to date, laying the foundation for future studies of this genus. METHODS: We used a target enrichment approach across 37 diploid Helianthus species/subspecies with a total of 103 accessions. This technique garnered 170 genes used for both coalescent and concatenation analyses. The resulting phylogeny was additionally used to examine the evolution of life history and growth form across the genus. KEY RESULTS: Coalescent and concatenation approaches were largely congruent, resolving a large annual clade and two large perennial clades. However, several relationships deeper within the phylogeny were more weakly supported and incongruent among analyses including the placement of H. agrestis, H. cusickii, H. gracilentus, H. mollis, and H. occidentalis. CONCLUSIONS: The current phylogeny supports three major clades including a large annual clade, a southeastern perennial clade, and another clade of primarily large-statured perennials. Relationships among taxa are more consistent with early phylogenies of the genus using morphological and crossing data than recent efforts using single genes, which highlight the difficulties of phylogenetic estimation in genera known for reticulate evolution. Additionally, conflict and low support at the base of the perennial clades may suggest a rapid radiation and/or ancient introgression within the genus.


Assuntos
Diploide , Helianthus/classificação , Helianthus/genética , Filogenia , Cloroplastos/genética , Etiquetas de Sequências Expressas , Genes de Plantas , Funções Verossimilhança , Especificidade da Espécie
4.
Mol Phylogenet Evol ; 85: 76-87, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25689607

RESUMO

The North American carnivorous pitcher plant genus Sarracenia (Sarraceniaceae) is a relatively young clade (<3 million years ago) displaying a wide range of morphological diversity in complex trapping structures. This recently radiated group is a promising system to examine the structural evolution and diversification of carnivorous plants; however, little is known regarding evolutionary relationships within the genus. Previous attempts at resolving the phylogeny have been unsuccessful, most likely due to few parsimony-informative sites compounded by incomplete lineage sorting. Here, we applied a target enrichment approach using multiple accessions to assess the relationships of Sarracenia species. This resulted in 199 nuclear genes from 75 accessions covering the putative 8-11 species and 8 subspecies/varieties. In addition, we recovered 42kb of plastome sequence from each accession to estimate a cpDNA-derived phylogeny. Unsurprisingly, the cpDNA had few parsimony-informative sites (0.5%) and provided little information on species relationships. In contrast, use of the targeted nuclear loci in concatenation and coalescent frameworks elucidated many relationships within Sarracenia even with high heterogeneity among gene trees. Results were largely consistent for both concatenation and coalescent approaches. The only major disagreement was with the placement of the purpurea complex. Moreover, results suggest an Appalachian massif biogeographic origin of the genus. Overall, this study highlights the utility of target enrichment using multiple accessions to resolve relationships in recently radiated taxa.


Assuntos
Evolução Biológica , Filogenia , Sarraceniaceae/classificação , Núcleo Celular/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , Genes de Plantas , Funções Verossimilhança , Modelos Genéticos , Análise de Sequência de DNA
5.
PLoS One ; 6(7): e22658, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829473

RESUMO

Pitcher plant bogs, or carnivorous plant wetlands, have experienced extensive habitat loss and fragmentation throughout the southeastern United States Coastal Plain, resulting in an estimated reduction to <3% of their former range. This situation has lead to increased management attention of these habitats and their carnivorous plant species. However, conservation priorities focus primarily on the plants since little information currently exists on other community members, such as their endemic arthropod biota. Here, we investigated the population structure of one of these, the obligate pitcher plant moth Exyra semicrocea (Lepidoptera: Noctuidae), using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Examination of 221 individuals from 11 populations across eight southeastern US states identified 51 unique haplotypes. These haplotypes belonged to one of two divergent (∼1.9-3.0%) lineages separated by the Mississippi alluvial plain. Populations of the West Gulf Coastal Plain exhibited significant genetic structure, contrasting with similarly distanced populations east of the Mississippi alluvial plain. In the eastern portion of the Coastal Plain, an apparent transition zone exists between two regionally distinct population groups, with a well-established genetic discontinuity for other organisms coinciding with this zone. The structure of E. semicrocea appears to have been influenced by patchy pitcher plant bog habitats in the West Gulf Coastal Plain as well as impacts of Pleistocene interglacials on the Apalachicola-Chattahoochee-Flint River Basin. These findings, along with potential extirpation of E. semicrocea at four visited, but isolated, sites highlight the need to consider other endemic or associated community members when managing and restoring pitcher plant bog habitats.


Assuntos
Migração Animal/fisiologia , DNA Mitocondrial/genética , Deriva Genética , Genética Populacional , Haplótipos/genética , Mariposas/genética , Animais , Evolução Molecular , Estruturas Genéticas , Variação Genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...