Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 240(2): 880-891, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37276503

RESUMO

Most contemporary angiosperms (flowering plants) are insect pollinated, but pollination by wind, water or vertebrates occurs in many lineages. Though evidence suggests insect pollination may be ancestral in angiosperms, this is yet to be assessed across the full phylogeny. Here, we reconstruct the ancestral pollination mode of angiosperms and quantify the timing and environmental associations of pollination shifts. We use a robust, dated phylogeny and species-level sampling across all angiosperm families to model the evolution of pollination modes. Data on the pollination system or syndrome of 1160 species were collated from the primary literature. Angiosperms were ancestrally insect pollinated, and insects have pollinated angiosperms for c. 86% of angiosperm evolutionary history. Wind pollination evolved at least 42 times, with few reversals to animal pollination. Transitions between insect and vertebrate pollination were more frequent: vertebrate pollination evolved at least 39 times from an insect-pollinated ancestor with at least 26 reversals. The probability of wind pollination increases with habitat openness (measured by Leaf Area Index) and distance from the equator. Our reconstruction gives a clear overview of pollination macroevolution across angiosperms, highlighting the long history of interactions between insect pollinators and angiosperms still vital to biodiversity today.


Assuntos
Magnoliopsida , Polinização , Humanos , Animais , Magnoliopsida/genética , Insetos , Filogenia , Vento , Flores
2.
Mol Ecol ; 28(7): 1585-1592, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30672639

RESUMO

The hallmark of eusociality is the division of labour between reproductive (queen) and nonreproductive (worker) females. Yet in many eusocial insects, workers retain the ability to produce haploid male offspring from unfertilized eggs. The reproductive potential of workers has well-documented consequences for the structure and function of insect colonies, but its implications at the population level are less often considered. We show that worker reproduction in honey bees can have an important role in maintaining genetic diversity at the sex locus in invasive populations. The honey bee sex locus is homozygous-lethal, and, all else being equal, a higher allele number in the population lead to higher mean brood survival. In an invasive population of the honey bee Apis cerana in Australia, workers contribute significantly to male production: 38% of male-producing colonies are queenless, and these contribute one-third of all males at mating congregations. Using a model, we show that such male production by queenless workers will increase the number of sex alleles retained in nascent invasive populations following founder events, relative to a scenario in which only queens reproduce. We conclude that by rescuing sex locus diversity that would otherwise be lost, workers' sons help honey bee populations to minimize the negative effects of inbreeding after founder events and so contribute to their success as invaders.


Assuntos
Abelhas/genética , Variação Genética , Comportamento Sexual Animal , Animais , Austrália , Feminino , Genética Populacional , Espécies Introduzidas , Masculino , Modelos Biológicos , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...