Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(23): 6990-6996, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38818969

RESUMO

Although large efforts have been made to improve the growth of hexagonal boron nitride (hBN) by heteroepitaxy, the non-native substrates remain a fundamental factor that limits the quality. This problem can be solved by homoepitaxy, which is the growth of hBN on hBN substrates. In this report, we demonstrate the homoepitaxial growth of triangular BN grains on exfoliated hBN flakes by Metal-Organic Vapor Phase Epitaxy and show by atomic force microscopy and photoluminescence that the stacking of these triangular islands can deviate from the AA' stacking of hBN. We show that the stacking order is enforced by the crystallographic direction of the edge of the exfoliated hBN flakes, with armchair edges allowing for centrosymmetric stacking, whereas zigzag edges lead to the growth of noncentrosymmetric BN polytypes. Our results indicate pathways to grow homoepitaxial BN with tunable layer stacking, which is required to induce piezoelectricity or ferroelectricity.

2.
Nanotechnology ; 35(17)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38150722

RESUMO

Strain built-in electronic and optoelectronic devices can influence their properties and lifetime. This effect is particularly significant at the interface between two-dimensional materials and substrates. One such material is epitaxial hexagonal boron nitride (h-BN), which is grown at temperatures often exceeding 1000 °C. Due to the high growth temperature, h-BN based devices operating at room temperature can be strongly affected by strain generated during cooling due to the differences in lattice thermal expansion of h-BN and the substrate. Here, we present results of temperature-dependent Raman studies of the in-plane E2ghighphonon mode in the temperature range of 300-1100 K measured for h-BN grown by metalorganic vapor phase epitaxy. We observe a change, by an order of magnitude, in the rate of the temperature-induced frequency shift for temperatures below 900 K, indicating a strong reduction of the effective h-BN/substrate interaction. We attribute this behavior to the creation of h-BN wrinkles which results in strain relaxation. This interpretation is supported by the observation that no change of layer/substrate interaction and no wrinkles are observed for delaminated h-BN films transferred onto silicon. Our findings demonstrate that wrinkle formation is an inherent process for two-dimensional materials on foreign substrates that has to be understood to allow for the successful engineering of devices based on epitaxially grown van der Waals heterostructures.

3.
Nanotechnology ; 35(5)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37879328

RESUMO

Distributed Bragg Reflectors (DBR) are well-established photonic structures that are used in many photonic applications. However, most of the DBRs are based on different materials or require post-process etching which can hinder integration with other components in the final photonic structure. Here, we demonstrate the fabrication of DBR structures consisting only of undoped boron nitride (BN) layers with high refractive index contrast by using metal-organic chemical vapor deposition (MOCVD). This has been achieved in a single process, without the need for any post-process etching. The difference in the refractive index of the component BN layers stems from different degrees of porosity of the individual BN layers, which is a direct result of a different growth temperature. The fabricated DBR structures consist of 15.5 pairs of BN layers and exhibit a reflectance of 87 ± 1% at the maximum. The wavelength of maximum reflectance can be tuned from 500 nm up to the infrared region (IR), by simply adjusting the growth periods of subsequent BN layers. We also demonstrate that the fabricated structures can be used to create an optical microcavity. The fabricated DBRs are very promising candidates for future applications, for example in combination with single-photon emitters in h-BN, which could allow the building of a cavity-based all-BN single-photon source.

4.
Nano Lett ; 23(4): 1267-1272, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36689737

RESUMO

Hydrogen is an important building block in global strategies toward a future green energy system. To make this transition possible, intense scientific efforts are needed, also in the field of materials science. Two-dimensional crystals, such as hexagonal boron nitride (hBN), are very promising in this regard, as it has been demonstrated that micrometer-sized flakes are excellent barriers to molecular hydrogen. However, it remains an open question whether large-area layers fabricated by industrially relevant methods preserve such promising properties. In this work, we show that electron-beam-induced splitting of water creates hBN bubbles that effectively store molecular hydrogen for weeks and under extreme mechanical deformation. We demonstrate that epitaxial hBN allows direct visualization and monitoring of the process of hydrogen generation by radiolysis of interfacial water. Our findings show that hBN is not only a potential candidate for hydrogen storage but also holds promise for the development of unconventional hydrogen production schemes.

5.
Nano Lett ; 22(7): 2835-2842, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35369696

RESUMO

Measurements of optical activity can be readily performed in transparent matter by means of a rotation of transmitted light polarization. In the case of opaque bulk materials, such measurements cannot be performed, making it difficult to assess possible chiral properties. In this work, we present full angular polarization dependencies of the Raman modes of bulk 1T-TaS2, which has recently been suggested to have chiral properties after pulsed laser excitation. We found that a mechanical rotation of the sample does not alter polarization-resolved Raman spectra, which can only be explained by introducing an antisymmetric Raman tensor, frequently used to describe Raman optical activity (ROA). Raman spectra obtained under circularly polarized excitation demonstrate that 1T-TaS2 indeed shows ROA, providing strong evidence that 1T-TaS2 is chiral under the used conditions of laser excitation. Our results suggest that ROA may be used as a universal tool to study chiral properties of quantum materials.


Assuntos
Análise Espectral Raman , Rotação Ocular , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...