Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 335: 111791, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37451549

RESUMO

The greatest threat to profitable peach production is cold damage to reproductive tissues. To better understand and mitigate cold damage in peach accurate and efficient assessment of floral bud cold hardiness (Hc) is critical. Differential thermal analysis (DTA) was optimized for efficient and precise detection of low-temperature exotherms (LTE) created by the freezing of supercooled intracellular water in peach floral primordia to determine Hc weekly during the dormant season. DTA-estimated lethal temperatures (LT) were validated against the standard oxidative browning method (OB) and in situ field damage following three freezing events. Chilling (0-7.2 °C) accumulation tracked throughout the dormant season to determine DTA-related changes across dormancy phase transitions. LTEs showed rapid acclimation of 'Redhaven' peach floral buds following the first frost of the dormant season (Tmin=-6.8 °C on November 18, 2016) and maintained similar Hc levels for 45 days through maximum Hc (LT50 =-23.9 °C recorded on January 9, 2017) and until the accumulation of 868 chilling hours was reached. Following this milestone, a significant 55% loss of LTEs upon the accumulation of the first growing degree day (Tbase=7 °C) was recoded on February 7, 2017. An LTE recovery approach, pre-exposing buds to a non-freezing low temperature (-2°C) for a period of 12 h, more than doubled the number of LTEs detected for another 27 days extending DTA use for LT prediction. The results presented herein confirm that the use of DTA is efficient and accurate to determine Hc in peach floral buds, and suggest that the LTE loss in early spring may be a signature response related to the shift from endo- into ecodormancy following two environmental temperature cues, chilling satisfaction and the first heat accumulation post chilling satisfaction.


Assuntos
Prunus persica , Temperatura , Temperatura Baixa , Água , Análise Diferencial Térmica
2.
Food Chem ; 335: 127626, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32739812

RESUMO

The development of precise and reliable near infrared spectroscopy (NIRS)-based non-destructive tools to assess physicochemical properties of fleshy fruit has been challenging. A novel crop load × fruit developmental stage protocol for multivariate NIRS-based prediction models calibration to non-destructively assess peach internal quality and maturity was followed. Regression statistics of the prediction models highlighted that dry matter content (DMC, R2 = 0.98, RMSEP = 0.41%), soluble solids concentration (SSC, R2 = 0.96, RMSEP = 0.58%) and index of absorbance difference (IAD, R2 = 0.96, RMSEP = 0.08) could be estimated accurately with a single scan during fruit growth and development. Thus, the impact of preharvest factors such as crop load and canopy position on peach quality and maturity was evaluated. Large-scale field validation showed that heavier crop loads reduced peach quality (DMC, SSC) and delayed maturity (IAD) and upper canopy position advanced both mainly in the moderate crop loads. This calibration protocol can enhance NIRS adaptation across tree fruit supply chain.


Assuntos
Qualidade dos Alimentos , Frutas/química , Frutas/crescimento & desenvolvimento , Prunus persica/química , Prunus persica/crescimento & desenvolvimento , Espectroscopia de Luz Próxima ao Infravermelho , Calibragem , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...