Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(6): e5011, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747388

RESUMO

A protein sequence encodes its energy landscape-all the accessible conformations, energetics, and dynamics. The evolutionary relationship between sequence and landscape can be probed phylogenetically by compiling a multiple sequence alignment of homologous sequences and generating common ancestors via Ancestral Sequence Reconstruction or a consensus protein containing the most common amino acid at each position. Both ancestral and consensus proteins are often more stable than their extant homologs-questioning the differences between them and suggesting that both approaches serve as general methods to engineer thermostability. We used the Ribonuclease H family to compare these approaches and evaluate how the evolutionary relationship of the input sequences affects the properties of the resulting consensus protein. While the consensus protein derived from our full Ribonuclease H sequence alignment is structured and active, it neither shows properties of a well-folded protein nor has enhanced stability. In contrast, the consensus protein derived from a phylogenetically-restricted set of sequences is significantly more stable and cooperatively folded, suggesting that cooperativity may be encoded by different mechanisms in separate clades and lost when too many diverse clades are combined to generate a consensus protein. To explore this, we compared pairwise covariance scores using a Potts formalism as well as higher-order sequence correlations using singular value decomposition (SVD). We find the SVD coordinates of a stable consensus sequence are close to coordinates of the analogous ancestor sequence and its descendants, whereas the unstable consensus sequences are outliers in SVD space.


Assuntos
Evolução Molecular , Ribonuclease H/química , Ribonuclease H/genética , Ribonuclease H/metabolismo , Sequência Consenso , Alinhamento de Sequência , Filogenia , Sequência de Aminoácidos , Modelos Moleculares , Dobramento de Proteína , Conformação Proteica
2.
bioRxiv ; 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37425932

RESUMO

A protein sequence encodes its energy landscape - all the accessible conformations, energetics, and dynamics. The evolutionary relationship between sequence and landscape can be probed phylogenetically by compiling a multiple sequence alignment of homologous sequences and generating common ancestors via Ancestral Sequence Reconstruction or a consensus protein containing the most common amino acid at each position. Both ancestral and consensus proteins are often more stable than their extant homologs - questioning the differences and suggesting that both approaches serve as general methods to engineer thermostability. We used the Ribonuclease H family to compare these approaches and evaluate how the evolutionary relationship of the input sequences affects the properties of the resulting consensus protein. While the overall consensus protein is structured and active, it neither shows properties of a well-folded protein nor has enhanced stability. In contrast, the consensus protein derived from a phylogenetically-restricted region is significantly more stable and cooperatively folded, suggesting that cooperativity may be encoded by different mechanisms in separate clades and lost when too many diverse clades are combined to generate a consensus protein. To explore this, we compared pairwise covariance scores using a Potts formalism as well as higher-order couplings using singular value decomposition (SVD). We find the SVD coordinates of a stable consensus sequence are close to coordinates of the analogous ancestor sequence and its descendants, whereas the unstable consensus sequences are outliers in SVD space.

3.
Biophys J ; 120(23): 5267-5278, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34757081

RESUMO

Despite the widely reported success of consensus design in producing highly stabilized proteins, little is known about the physical mechanisms underlying this stabilization. Here, we explore the potential sources of stabilization by performing a systematic analysis of the 29 substitutions that we previously found to collectively stabilize a consensus homeodomain compared with an extant homeodomain. By separately introducing groups of consensus substitutions that alter or preserve charge state, occur at varying degrees of residue burial, and occur at positions of varying degrees of conservation, we determine the extent to which these three features contribute to the consensus stability enhancement. Surprisingly, we find that the largest total contribution to stability comes from consensus substitutions on the protein surface and that the largest per substitution contributions come from substitutions that maintain charge state. This finding suggests that, although consensus proteins are often enriched in charged residues, consensus stabilization does not result primarily from interactions involving charged residues. Although consensus substitutions at strongly conserved positions also contribute disproportionately to stabilization, significant stabilization is also contributed from substitutions at weakly conserved positions. Furthermore, we find that identical consensus substitutions show larger stabilizing effects when introduced into the consensus background than when introduced into an extant homeodomain, indicating that synergistic, stabilizing interactions among the consensus residues contribute to consensus stability enhancement of the homeodomain. By measuring DNA binding affinity for the same set of variants, we find that, although consensus design of the homeodomain increases both affinity and folding stability, it does so using a largely nonoverlapping set of substitutions.


Assuntos
Proteínas de Homeodomínio , Dobramento de Proteína , Proteínas de Homeodomínio/genética
4.
Methods Enzymol ; 643: 149-179, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32896279

RESUMO

The goal of protein design is to create proteins that are stable, soluble, and active. Here we focus on one approach to protein design in which sequence information is used to create a "consensus" sequence. Such consensus sequences comprise the most common residue at each position in a multiple sequence alignment (MSA). After describing some general ideas that relate MSA and consensus sequences and presenting a statistical thermodynamic framework that relates consensus and non-consensus sequences to stability, we detail the process of designing a consensus sequence and survey reports of consensus design and characterization from the literature. Many of these consensus proteins retain native biological activities including ligand binding and enzyme activity. Remarkably, in most cases the consensus protein shows significantly higher stability than extant versions of the protein, as measured by thermal or chemical denaturation, consistent with the statistical thermodynamic model. To understand this stability increase, we compare various features of consensus sequences with the extant MSA sequences from which they were derived. Consensus sequences show enrichment in charged residues (most notably glutamate and lysine) and depletion of uncharged polar residues (glutamine, serine, and asparagine). Surprisingly, a survey of stability changes resulting from point substitutions show little correlation with residue frequencies at the corresponding positions within the MSA, suggesting that the high stability of consensus proteins may result from interactions among residue pairs or higher-order clusters. Whatever the source, the large number of reported successes demonstrates that consensus design is a viable route to generating active and in many cases highly stabilized proteins.


Assuntos
Proteínas , Sequência de Aminoácidos , Sequência Consenso , Proteínas/genética , Alinhamento de Sequência , Termodinâmica
5.
Proc Natl Acad Sci U S A ; 116(23): 11275-11284, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31110018

RESUMO

Consensus sequence design offers a promising strategy for designing proteins of high stability while retaining biological activity since it draws upon an evolutionary history in which residues important for both stability and function are likely to be conserved. Although there have been several reports of successful consensus design of individual targets, it is unclear from these anecdotal studies how often this approach succeeds and how often it fails. Here, we attempt to assess generality by designing consensus sequences for a set of six protein families with a range of chain lengths, structures, and activities. We characterize the resulting consensus proteins for stability, structure, and biological activities in an unbiased way. We find that all six consensus proteins adopt cooperatively folded structures in solution. Strikingly, four of six of these consensus proteins show increased thermodynamic stability over naturally occurring homologs. Each consensus protein tested for function maintained at least partial biological activity. Although peptide binding affinity by a consensus-designed SH3 is rather low, Km values for consensus enzymes are similar to values from extant homologs. Although consensus enzymes are slower than extant homologs at low temperature, they are faster than some thermophilic enzymes at high temperature. An analysis of sequence properties shows consensus proteins to be enriched in charged residues, and rarified in uncharged polar residues. Sequence differences between consensus and extant homologs are predominantly located at weakly conserved surface residues, highlighting the importance of these residues in the success of the consensus strategy.


Assuntos
Sequência Consenso/genética , Proteínas/genética , Temperatura , Termodinâmica
6.
J Am Chem Soc ; 139(14): 5051-5060, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28326770

RESUMO

There is considerable interest in generating proteins with both high stability and high activity for biomedical and industrial purposes. One approach that has been used successfully to increase the stability of linear repeat proteins is consensus design. It is unclear the extent over which the consensus design approach can be used to produce folded and hyperstable proteins, and importantly, whether such stabilized proteins would retain function. Here we extend the consensus strategy to design a globular protein. We show that a consensus-designed homeodomain (HD) sequence adopts a cooperatively folded homeodomain structure. The unfolding free energy of the consensus-HD is 5 kcal·mol-1 higher than that of the naturally occurring engrailed-HD from Drosophila melanogaster. Remarkably, the consensus-HD binds the engrailed-HD cognate DNA in a similar mode as the engrailed-HD with approximately 100-fold higher affinity. 15N relaxation studies show a decrease in ps-ns backbone dynamics in the free state of consensus-HD, suggesting that increased affinity is not a result of increased plasticity. In addition to demonstrating the potential for consensus design of globular proteins with increased stability, these results demonstrate that greatly stabilized proteins can bind cognate substrates with increased affinities, showing that high stability is compatible with function.

7.
Biochemistry ; 54(22): 3528-42, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25962980

RESUMO

In this work, we obtain the data needed to predict chemical interactions of polyethylene glycols (PEGs) and glycerol with proteins and related organic compounds and thereby interpret or predict chemical effects of PEGs on protein processes. To accomplish this, we determine interactions of glycerol and tetraEG with >30 model compounds displaying the major C, N, and O functional groups of proteins. Analysis of these data yields coefficients (α values) that quantify interactions of glycerol, tetraEG, and PEG end (-CH2OH) and interior (-CH2OCH2-) groups with these groups, relative to interactions with water. TetraEG (strongly) and glycerol (weakly) interact favorably with aromatic C, amide N, and cationic N, but unfavorably with amide O, carboxylate O, and salt ions. Strongly unfavorable O and salt anion interactions help make both small and large PEGs effective protein precipitants. Interactions of tetraEG and PEG interior groups with aliphatic C are quite favorable, while interactions of glycerol and PEG end groups with aliphatic C are not. Hence, tetraEG and PEG300 favor unfolding of the DNA-binding domain of lac repressor (lacDBD), while glycerol and di- and monoethylene glycol are stabilizers. Favorable interactions with aromatic and aliphatic C explain why PEG400 greatly increases the solubility of aromatic hydrocarbons and steroids. PEG400-steroid interactions are unusually favorable, presumably because of simultaneous interactions of multiple PEG interior groups with the fused ring system of the steroid. Using α values reported here, chemical contributions to PEG m-values can be predicted or interpreted in terms of changes in water-accessible surface area (ΔASA) and separated from excluded volume effects.


Assuntos
Proteínas de Escherichia coli/química , Glicerol/química , Repressores Lac/química , Modelos Químicos , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...