Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 5: 3328, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24534908

RESUMO

Colour centres in diamond have emerged as versatile tools for solid-state quantum technologies ranging from quantum information to metrology, where the nitrogen-vacancy centre is the most studied to date. Recently, this toolbox has expanded to include novel colour centres to realize more efficient spin-photon quantum interfaces. Of these, the silicon-vacancy centre stands out with highly desirable photonic properties. The challenge for utilizing this centre is to realize the hitherto elusive optical access to its electronic spin. Here we report spin-tagged resonance fluorescence from the negatively charged silicon-vacancy centre. Our measurements reveal a spin-state purity approaching unity in the excited state, highlighting the potential of the centre as an efficient spin-photon quantum interface.

2.
Phys Rev Lett ; 112(3): 036405, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24484153

RESUMO

The negatively charged silicon vacancy (SiV) color center in diamond has recently proven its suitability for bright and stable single photon emission. However, its electronic structure so far has remained elusive. We here explore the electronic structure by exposing single SiV defects to a magnetic field where the Zeeman effect lifts the degeneracy of magnetic sublevels. The similar responses of single centers and a SiV ensemble in a low strain reference sample prove our ability to fabricate almost perfect single SiVs, revealing the true nature of the defect's electronic properties. We model the electronic states using a group-theoretical approach yielding a good agreement with the experimental observations. Furthermore, the model correctly predicts polarization measurements on single SiV centers and explains recently discovered spin selective excitation of SiV defects.

3.
Phys Chem Chem Phys ; 13(28): 12883-91, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21687867

RESUMO

Platinum nanoparticles supported on boron-doped single-crystalline diamond surfaces were used as a model system to investigate the catalytic activity with respect to the influence of particle morphology, particle density and surface preparation of the diamond substrates. We report on the preparation, characterization and activity regarding hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) of these Pt/diamond electrodes. Two kinds of diamond layers with boron doping above 10(20) cm(-3) were grown epitaxially on (100)-oriented diamond substrates; post-treatments of wet chemical oxidation and radio frequency (rf) oxygen plasma treatments were applied. Electrochemical deposition of Pt was performed using a potentiostatic double-pulse technique, which allowed variation of the particle size in the range between 1 nm and 15 nm in height and 5 nm and 50 nm in apparent radius, while keeping the particle density constant. Higher nucleation densities on the plasma processed surface at equal deposition parameters could be related to the plasma-induced surface defects. Electrochemical characterization shows that the platinum particles act as nanoelectrodes and form an ohmic contact with the diamond substrate. The catalytic activity regarding HER and HOR of the platinum nanoparticles exhibits no dependence on the particle size down to particle heights of ∼1 nm. The prepared Pt on diamond(100) samples show a similar platinum-specific activity as bulk platinum. Therefore, while keeping the activity constant, the well-dispersed particles on diamond offer an optimized surface-to-material ratio.

4.
Langmuir ; 23(10): 5615-21, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-17407337

RESUMO

The biocompatibility of diamond was investigated with a view toward correlating surface chemistry and topography with cellular adhesion and growth. The adhesion properties of normal human dermal fibroblast (NHDF) cells on microcrystalline and ultrananocrystalline diamond (UNCD) surfaces were measured using atomic force microscopy. Cell adhesion forces increased by several times on the hydrogenated diamond surfaces after UV irradiation of the surfaces in air or after functionalization with undecylenic acid. A direct correlation between initial cell adhesion forces and the subsequent cell growth was observed. Cell adhesion forces were observed to be strongest on UV-treated UNCD, and cell growth experiments showed that UNCD was intrinsically more biocompatible than microcrystalline diamond surfaces. The surface carboxylic acid groups on the functionalized diamond surface provide tethering sites for laminin to support the growth of neuron cells. Finally, using capillary injection, a surface gradient of polyethylene glycol could be assembled on top of the diamond surface for the construction of a cell gradient.


Assuntos
Diamante , Fibroblastos/metabolismo , Teste de Materiais , Nanopartículas , Neurônios/metabolismo , Raios Ultravioleta , Animais , Adesão Celular/efeitos da radiação , Diamante/química , Fibroblastos/citologia , Humanos , Laminina/metabolismo , Microscopia de Força Atômica , Nanopartículas/química , Nanopartículas/ultraestrutura , Neurônios/citologia , Células PC12 , Tamanho da Partícula , Fotoquímica , Ratos , Ácidos Undecilênicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...