Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1647: 57-64, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27155453

RESUMO

Inclusions of Tar DNA- binding protein 43 (TDP-43) are a pathological hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43-positive inclusions (FTLD-TDP). Pathological TDP-43 exhibits the disease-specific biochemical signatures, which include its ubiquitination, phosphorylation and truncation. Recently, we demonstrated that the extreme N-terminus of TDP-43 regulates formation of abnormal cytoplasmic TDP-43 aggregation in cultured cells and primary neurons. However, it remained unclear whether this N-terminal domain mediates TDP-43 aggregation and the associated toxicity in vivo. To investigate this, we expressed a GFP-tagged TDP-43 with a nuclear localization signal mutation (GFP-TDP-43NLSm) and a truncated form without the extreme N-terminus (GFP-TDP-4310-414-NLSm) by adeno-associated viral (AAV) vectors in mouse primary cortical neurons and murine central nervous system. Compared to neurons containing GFP alone, expression of GFP-TDP-43NLSm resulted in the formation of ubiquitin-positive cytoplasmic inclusions and activation of caspase-3, an indicator of cell death. Moreover, mice expressing GFP-TDP-43NLSm proteins show reactive gliosis and develop neurological abnormalities. However, by deletion of TDP-43's extreme N-terminus, these pathological alterations can be abrogated. Together, our study provides further evidence confirming the critical role of the extreme N-terminus of TDP-43 in regulating protein structure as well as mediating toxicity associated with its aggregation. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.


Assuntos
Córtex Cerebral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neurônios/metabolismo , Animais , Caspase 3/metabolismo , Morte Celular , Células Cultivadas , Córtex Cerebral/patologia , Proteínas de Ligação a DNA/genética , Gliose/metabolismo , Corpos de Inclusão/metabolismo , Camundongos , Atividade Motora , Neurônios/patologia
2.
Nat Neurosci ; 18(8): 1175-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26192745

RESUMO

Increasing evidence suggests that defective RNA processing contributes to the development of amyotrophic lateral sclerosis (ALS). This may be especially true for ALS caused by a repeat expansion in C9orf72 (c9ALS), in which the accumulation of RNA foci and dipeptide-repeat proteins are expected to modify RNA metabolism. We report extensive alternative splicing (AS) and alternative polyadenylation (APA) defects in the cerebellum of c9ALS subjects (8,224 AS and 1,437 APA), including changes in ALS-associated genes (for example, ATXN2 and FUS), and in subjects with sporadic ALS (sALS; 2,229 AS and 716 APA). Furthermore, heterogeneous nuclear ribonucleoprotein H (hnRNPH) and other RNA-binding proteins are predicted to be potential regulators of cassette exon AS events in both c9ALS and sALS. Co-expression and gene-association network analyses of gene expression and AS data revealed divergent pathways associated with c9ALS and sALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Cerebelo/metabolismo , Lobo Frontal/metabolismo , Regulação da Expressão Gênica/genética , Proteínas/genética , RNA/metabolismo , Transcriptoma/genética , Adulto , Idoso , Processamento Alternativo , Proteína C9orf72 , Estudos de Associação Genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Humanos , Pessoa de Meia-Idade , Poliadenilação/genética , Análise de Sequência de RNA
3.
Science ; 348(6239): 1151-4, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25977373

RESUMO

The major genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis is a G4C2 repeat expansion in C9ORF72. Efforts to combat neurodegeneration associated with "c9FTD/ALS" are hindered by a lack of animal models recapitulating disease features. We developed a mouse model to mimic both neuropathological and clinical c9FTD/ALS phenotypes. We expressed (G4C2)66 throughout the murine central nervous system by means of somatic brain transgenesis mediated by adeno-associated virus. Brains of 6-month-old mice contained nuclear RNA foci, inclusions of poly(Gly-Pro), poly(Gly-Ala), and poly(Gly-Arg) dipeptide repeat proteins, as well as TDP-43 pathology. These mouse brains also exhibited cortical neuron and cerebellar Purkinje cell loss, astrogliosis, and decreased weight. (G4C2)66 mice also developed behavioral abnormalities similar to clinical symptoms of c9FTD/ALS patients, including hyperactivity, anxiety, antisocial behavior, and motor deficits.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Demência Frontotemporal/genética , Camundongos , Proteínas/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Transtorno da Personalidade Antissocial/genética , Transtorno da Personalidade Antissocial/patologia , Proteína C9orf72 , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Dependovirus , Dipeptídeos/metabolismo , Demência Frontotemporal/patologia , Técnicas de Transferência de Genes , Células HEK293 , Humanos , Células de Purkinje/metabolismo , Células de Purkinje/patologia , RNA Nuclear/metabolismo
4.
Alzheimers Res Ther ; 6(3): 29, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25031639

RESUMO

The identification of tau protein as a major constituent of neurofibrillary tangles spurred considerable effort devoted to identifying and validating pathways through which therapeutics may alleviate tau burden in Alzheimer's disease and related tauopathies, including chronic traumatic encephalopathy associated with sport- and military-related injuries. Most tau-based therapeutic strategies have previously focused on modulating tau phosphorylation, given that tau species present within neurofibrillary tangles are hyperphosphorylated on a number of different residues. However, the recent discovery that tau is modified by acetylation necessitates additional research to provide greater mechanistic insight into the spectrum of physiological consequences of tau acetylation, which may hold promise as a novel therapeutic target. In this review, we discuss recent findings evaluating tau acetylation in the context of previously accepted notions regarding tau biology and pathophysiology. We also examine the evidence demonstrating the neuroprotective and beneficial consequences of inhibiting histone deacetylase (HDAC)6, a tau deacetylase, including its effect on microtubule stabilization. We also discuss the rationale for pharmacologically modulating HDAC6 in tau-based pathologies as a novel therapeutic strategy.

5.
Hum Mol Genet ; 23(1): 104-16, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23962722

RESUMO

The accumulation of hyperphosphorylated tau in neurofibrillary tangles (NFTs) is a neuropathological hallmark of tauopathies, including Alzheimer's disease (AD) and chronic traumatic encephalopathy, but effective therapies directly targeting the tau protein are currently lacking. Herein, we describe a novel mechanism in which the acetylation of tau on KXGS motifs inhibits phosphorylation on this same motif, and also prevents tau aggregation. Using a site-specific antibody to detect acetylation of KXGS motifs, we demonstrate that these sites are hypoacetylated in patients with AD, as well as a mouse model of tauopathy, suggesting that loss of acetylation on KXGS motifs renders tau vulnerable to pathogenic insults. Furthermore, we identify histone deacetylase 6 (HDAC6) as the enzyme responsible for the deacetylation of these residues, and provide proof of concept that acute treatment with a selective and blood-brain barrier-permeable HDAC6 inhibitor enhances acetylation and decreases phosphorylation on tau's KXGS motifs in vivo. As such, we have uncovered a novel therapeutic pathway that can be manipulated to block the formation of pathogenic tau species in disease.


Assuntos
Doença de Alzheimer/metabolismo , Histona Desacetilases/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo , Acetilação , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/tratamento farmacológico , Motivos de Aminoácidos/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Células HEK293 , Células HeLa , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Masculino , Camundongos , Fosforilação , Multimerização Proteica , Pirimidinas/farmacologia
6.
Hum Mol Genet ; 23(6): 1467-78, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24163244

RESUMO

Progranulin (GRN) mutations causing haploinsufficiency are a major cause of frontotemporal lobar degeneration (FTLD-TDP). Recent discoveries demonstrating sortilin (SORT1) is a neuronal receptor for PGRN endocytosis and a determinant of plasma PGRN levels portend the development of enhancers targeting the SORT1-PGRN axis. We demonstrate the preclinical efficacy of several approaches through which impairing PGRN's interaction with SORT1 restores extracellular PGRN levels. Our report is the first to demonstrate the efficacy of enhancing PGRN levels in iPSC neurons derived from frontotemporal dementia (FTD) patients with PGRN deficiency. We validate a small molecule preferentially increases extracellular PGRN by reducing SORT1 levels in various mammalian cell lines and patient-derived iPSC neurons and lymphocytes. We further demonstrate that SORT1 antagonists and a small-molecule binder of PGRN588₋593, residues critical for PGRN-SORT1 binding, inhibit SORT1-mediated PGRN endocytosis. Collectively, our data demonstrate that the SORT1-PGRN axis is a viable target for PGRN-based therapy, particularly in FTD-GRN patients.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Endocitose/efeitos dos fármacos , Demência Frontotemporal/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Piridinas/farmacologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Linhagem Celular Tumoral , Demência Frontotemporal/patologia , Variação Genética , Células HEK293 , Haploinsuficiência , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Linfócitos/metabolismo , Progranulinas , Reprodutibilidade dos Testes
7.
Acta Neuropathol ; 126(6): 895-905, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24166615

RESUMO

Individuals carrying (GGGGCC) expanded repeats in the C9orf72 gene represent a significant portion of patients suffering from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Elucidating how these expanded repeats cause "c9FTD/ALS" has since become an important goal of the field. Toward this end, we sought to investigate whether epigenetic changes are responsible for the decrease in C9orf72 expression levels observed in c9FTD/ALS patients. We obtained brain tissue from ten c9FTD/ALS individuals, nine FTD/ALS cases without a C9orf72 repeat expansion, and nine disease control participants, and generated fibroblastoid cell lines from seven C9orf72 expanded repeat carriers and seven participants carrying normal alleles. Chromatin immunoprecipitation using antibodies for histone H3 and H4 trimethylated at lysines 9 (H3K9), 27 (H3K27), 79 (H3K79), and 20 (H4K20) revealed that these trimethylated residues bind strongly to C9orf72 expanded repeats in brain tissue, but not to non-pathogenic repeats. Our finding that C9orf72 mRNA levels are reduced in the frontal cortices and cerebella of c9FTD/ALS patients is consistent with trimethylation of these histone residues, an event known to repress gene expression. Moreover, treating repeat carrier-derived fibroblasts with 5-aza-2-deoxycytidine, a DNA and histone demethylating agent, not only decreased C9orf72 binding to trimethylated histone residues, but also increased C9orf72 mRNA expression. Our results provide compelling evidence that trimethylation of lysine residues within histones H3 and H4 is a novel mechanism involved in reducing C9orf72 mRNA expression in expanded repeat carriers. Of importance, we show that mutant C9orf72 binding to trimethylated H3K9 and H3K27 is detectable in blood of c9FTD/ALS patients. Confirming these exciting results using blood from a larger cohort of patients may establish this novel epigenetic event as a biomarker for c9FTD/ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Degeneração Lobar Frontotemporal/genética , Histonas/genética , Proteínas/genética , Adulto , Alelos , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72 , Metilação de DNA , Epigênese Genética , Degeneração Lobar Frontotemporal/metabolismo , Expressão Gênica , Histonas/metabolismo , Humanos , Proteínas/metabolismo
8.
PLoS One ; 8(7): e69864, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922830

RESUMO

Tar DNA binding protein 43 (TDP-43) is the major component of pathological deposits in frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) and in amyotrophic lateral sclerosis (ALS). It has been reported that TDP-43 transgenic mouse models expressing human TDP-43 wild-type or ALS-associated mutations recapitulate certain ALS and FTLD pathological phenotypes. Of note, expression of human TDP-43 (hTDP-43) reduces the levels of mouse Tdp-43 (mTdp-43). However, it remained unclear whether the mechanisms through which TDP-43 induces ALS or FTLD-like pathologies resulted from a reduction in mTdp-43, an increase in hTDP-43, or a combination of both. In elucidating the role of mTdp-43 and hTDP-43 in hTDP-43 transgenic mice, we observed that reduction of mTdp-43 in non-transgenic mice by intraventricular brain injection of AAV1-shTardbp leads to a dramatic increase in the levels of splicing variants of mouse sortilin 1 and translin. However, the levels of these two abnormal splicing variants are not increased in hTDP-43 transgenic mice despite significant downregulation of mTdp-43 in these mice. Moreover, further downregulation of mTdp-43 in hTDP-43 hemizygous mice, which are asymptomatic, to the levels equivalent to that of mTdp-43 in hTDP-43 homozygous mice does not induce the pathological phenotypes observed in the homozygous mice. Lastly, the number of dendritic spines and the RNA levels of TDP-43 RNA targets critical for synapse formation and function are significantly decreased in symptomatic homozygous mice. Together, our findings indicate that mTdp-43 downregulation does not lead to a loss of function mechanism or account for the pathological phenotypes observed in hTDP-43 homozygous mice because hTDP-43 compensates for the reduction, and associated functions of mTdp-43. Rather, expression of hTDP-43 beyond a certain threshold leads to abnormal metabolism of TDP-43 RNA targets critical for neuronal structure and function, which might be responsible for the ALS or FTLD-like pathologies observed in homozygous hTDP-43 transgenic mice.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Degeneração Lobar Frontotemporal/patologia , Processamento Alternativo/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Animais Recém-Nascidos , Proteínas de Ligação a DNA/genética , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Degeneração Lobar Frontotemporal/metabolismo , Hemizigoto , Homozigoto , Humanos , Injeções Intraventriculares , Camundongos , Camundongos Transgênicos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sinapses/metabolismo
9.
Hum Mol Genet ; 22(15): 3112-22, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23575225

RESUMO

TAR DNA-binding protein-43 (TDP-43) is the principal component of ubiquitinated inclusions in amyotrophic lateral sclerosis (ALS) and the most common pathological subtype of frontotemporal dementia-frontotemporal lobar degeneration with TDP-43-positive inclusions (FTLD-TDP). To date, the C-terminus of TDP-43, which is aggregation-prone and contains almost all ALS-associated mutations, has garnered much attention while the functions of the N-terminus of TDP-43 remain largely unknown. To bridge this gap in our knowledge, we utilized novel cell culture and computer-assisted models to evaluate which region(s) of TDP-43 regulate its folding, self-interaction, biological activity and aggregation. We determined that the extreme N-terminus of TDP-43, specifically the first 10 residues, regulates folding of TDP-43 monomers necessary for proper homodimerization and TDP-43-regulated splicing. Despite such beneficial functions, we discovered an interesting dichotomy: full-length TDP-43 aggregation, which is believed to be a pathogenic process, also requires the extreme N-terminus of TDP-43. As such, we provide new insight into the structural basis for TDP-43 function and aggregation, and we suggest that stabilization of TDP-43 homodimers, the physiologically active form of TDP-43, may be a promising therapeutic strategy for ALS and FTLD-TDP.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/química , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Modelos Anatômicos , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Splicing de RNA
10.
Proc Natl Acad Sci U S A ; 109(52): 21510-5, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23236149

RESUMO

Sortilin 1 regulates the levels of brain progranulin (PGRN), a neurotrophic growth factor that, when deficient, is linked to cases of frontotemporal lobar degeneration with TAR DNA-binding protein-43 (TDP-43)-positive inclusions (FTLD-TDP). We identified a specific splicing enhancer element that regulates the inclusion of a sortilin exon cassette (termed Ex17b) not normally present in the mature sortilin mRNA. This enhancer element is consistently present in sortilin RNA of mice and other species but absent in primates, which carry a premature stop codon within the Ex17b sequence. In the absence of TDP-43, which acts as a regulatory inhibitor, Ex17b is included in the sortilin mRNA. In humans, in contrast to mice, the inclusion of Ex17b in sortilin mRNA generates a truncated, nonfunctional, extracellularly released protein that binds to but does not internalize PGRN, essentially acting as a decoy receptor. Based on these results, we propose a potential mechanism linking misregulation of sortilin splicing with altered PGRN metabolism.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Splicing de RNA/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Animais , Sequência de Bases , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Endocitose , Elementos Facilitadores Genéticos/genética , Éxons/genética , Glicina/metabolismo , Humanos , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Progranulinas , Ligação Proteica , Biossíntese de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
11.
Mol Neurodegener ; 7: 33, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22781549

RESUMO

BACKGROUND: Progranulin (PGRN), a widely secreted growth factor, is involved in multiple biological functions, and mutations located within the PGRN gene (GRN) are a major cause of frontotemporal lobar degeneration with TDP-43-positive inclusions (FLTD-TDP). In light of recent reports suggesting PGRN functions as a protective neurotrophic factor and that sortilin (SORT1) is a neuronal receptor for PGRN, we used a Sort1-deficient (Sort1-/-) murine primary hippocampal neuron model to investigate whether PGRN's neurotrophic effects are dependent on SORT1. We sought to elucidate this relationship to determine what role SORT1, as a regulator of PGRN levels, plays in modulating PGRN's neurotrophic effects. RESULTS: As the first group to evaluate the effect of PGRN loss in Grn knockout primary neuronal cultures, we show neurite outgrowth and branching are significantly decreased in Grn-/- neurons compared to wild-type (WT) neurons. More importantly, we also demonstrate that PGRN overexpression can rescue this phenotype. However, the recovery in outgrowth is not observed following treatment with recombinant PGRN harboring missense mutations p.C139R, p.P248L or p.R432C, indicating that these mutations adversely affect the neurotrophic properties of PGRN. In addition, we also present evidence that cleavage of full-length PGRN into granulin peptides is required for increased neuronal outgrowth, suggesting that the neurotrophic functions of PGRN are contained within certain granulins. To further characterize the mechanism by which PGRN impacts neuronal morphology, we assessed the involvement of SORT1. We demonstrate that PGRN induced-outgrowth occurs in the absence of SORT1 in Sort1-/- cultures. CONCLUSION: We demonstrate that loss of PGRN impairs proper neurite outgrowth and branching, and that exogenous PGRN alleviates this impairment. Furthermore, we determined that exogenous PGRN induces outgrowth independent of SORT1, suggesting another receptor(s) is involved in PGRN induced neuronal outgrowth.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proliferação de Células , Hipocampo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neuritos/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Granulinas , Hipocampo/citologia , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Cultura de Órgãos , Progranulinas
12.
Cold Spring Harb Perspect Med ; 2(5): a009423, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22553500

RESUMO

Parkinson's disease (PD), like a number of neurodegenerative diseases associated with aging, is characterized by the abnormal accumulation of protein in a specific subset of neurons. Although researchers have recently elucidated the genetic causes of PD, much remains unknown about what causes increased protein deposition in the disease. Given that increased protein aggregation may result not only from an increase in production, but also from decreased protein clearance, it is imperative to investigate both possibilities as potential PD culprits. This article provides a review of the systems that regulate protein clearance, including the ubiquitin proteasome system (UPS) and the autophagy-lysosomal pathway. Literature implicating failure of these mechanisms-such as UPS dysfunction resulting from environmental toxins and mutations in α-synuclein and parkin, as well as macroautophagic pathway failure because of oxidative stress and aging-in the pathogenesis of PD is also discussed.


Assuntos
Autofagia/fisiologia , Lisossomos/fisiologia , Doença de Parkinson/etiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Proteínas/metabolismo , Deficiências na Proteostase/etiologia , Ubiquitina/fisiologia , Adenosina Trifosfatases/genética , Envelhecimento/fisiologia , Animais , Poluentes Ambientais/toxicidade , Humanos , Camundongos , Mutação/genética , Estresse Oxidativo/fisiologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Proteólise , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Ratos , Fatores de Risco , Transdução de Sinais/fisiologia
13.
Brain Res ; 1462: 118-28, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22338605

RESUMO

Frontotemporal lobar degeneration (FTLD), a neurodegenerative disease primarily affecting the frontal and temporal lobes, is one of the most common types of dementia. While the majority of FTLD cases are sporadic, approximately 10-40% of patients have an inherited form of FTLD. Mutations in the progranulin gene (GRN) have recently been identified as a major cause of FTLD with ubiquitin positive inclusions (FTLD-U). Because over 70 disease-linked GRN mutations cause abnormal deficiencies in the production of PGRN, a protein that plays a crucial role in embryogenesis, cell growth and survival, wound repair and inflammation, researchers now aim to design therapies that would increase PGRN levels in affected individuals, thereby alleviating the symptoms associated with disease. Several compounds and genetic factors, as well as PGRN receptors, have recently been identified because of their ability to regulate PGRN levels. Strict quality control measures are needed given that extreme PGRN levels at either end of the spectrum - too low or too high - can lead to neurodegeneration or cancer, respectively. The aim of this review is to highlight what is known regarding PGRN biology; to improve understanding of the mechanisms involved in regulating PGRN levels and highlight studies that are laying the groundwork for the development of effective therapeutic modulators of PGRN. This article is part of a Special Issue entitled RNA-Binding Proteins.


Assuntos
Degeneração Lobar Frontotemporal/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Animais , Modelos Animais de Doenças , Degeneração Lobar Frontotemporal/tratamento farmacológico , Humanos , Inflamação/genética , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Camundongos , Mutação , Fatores de Crescimento Neural/fisiologia , Progranulinas , Transdução de Sinais/fisiologia , Cicatrização/fisiologia
14.
Mol Neurodegener ; 6: 73, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22029574

RESUMO

BACKGROUND: Abnormal distribution, modification and aggregation of transactivation response DNA-binding protein 43 (TDP-43) are the hallmarks of multiple neurodegenerative diseases, especially frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Researchers have identified 44 mutations in the TARDBP gene that encode TDP-43 as causative for cases of sporadic and familial ALS http://www.molgen.ua.ac.be/FTDMutations/. Certain mutant forms of TDP-43, such as M337V, are associated with increased low molecular weight (LMW) fragments compared to wild-type (WT) TDP-43 and cause neuronal apoptosis and developmental delay in chick embryos. Such findings support a direct link between altered TDP-43 function and neurodegeneration. RESULTS: To explore the pathogenic properties of the M337V mutation, we generated and characterized two mouse lines expressing human TDP-43 (hTDP-43(M337V)) carrying this mutation. hTDP-43(M337V) was expressed primarily in the nuclei of neurons in the brain and spinal cord, and intranuclear and cytoplasmic phosphorylated TDP-43 aggregates were frequently detected. The levels of TDP-43 LMW products of ~25 kDa and ~35 kDa species were also increased in the transgenic mice. Moreover, overexpression of hTDP-43(M337V) dramatically down regulated the levels of mouse TDP-43 (mTDP-43) protein and RNA, indicating TDP-43 levels are tightly controlled in mammalian systems. TDP-43M337V mice displayed reactive gliosis, widespread ubiquitination, chromatolysis, gait abnormalities, and early lethality. Abnormal cytoplasmic mitochondrial aggregates and abnormal phosphorylated tau were also detected in the mice. CONCLUSION: Our novel TDP-43M337V mouse model indicates that overexpression of hTDP-43(M337V) alone is toxic in vivo. Because overexpression of hTDP-43 in wild-type TDP-43 and TDP-43M337V mouse models produces similar phenotypes, the mechanisms causing pathogenesis in the mutant model remain unknown. However, our results suggest that overexpression of the hTDP-43(M337V) can cause neuronal dysfunction due to its effect on a number of cell organelles and proteins, such as mitochondria and TDP-43, that are critical for neuronal activity. The mutant model will serve as a valuable tool in the development of future studies designed to uncover pathways associated with TDP-43 neurotoxicity and the precise roles TDP-43 RNA targets play in neurodegeneration.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos Transgênicos , Degeneração Neural/fisiopatologia , Neurônios/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Transtornos dos Movimentos/patologia , Transtornos dos Movimentos/fisiopatologia , Mutação , Degeneração Neural/patologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/citologia , Neurônios/patologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Proteínas tau/genética , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...