Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 5(11): eaax9444, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31799397

RESUMO

Preserving tropical biodiversity is an urgent challenge when faced with the growing needs of countries. Despite their crucial importance for terrestrial ecosystems, most tropical plant species lack extinction risk assessments, limiting our ability to identify conservation priorities. Using a novel approach aligned with IUCN Red List criteria, we conducted a continental-scale preliminary conservation assessment of 22,036 vascular plant species in tropical Africa. Our results underline the high level of extinction risk of the tropical African flora. Thirty-three percent of the species are potentially threatened with extinction, and another third of species are likely rare, potentially becoming threatened in the near future. Four regions are highlighted with a high proportion (>40%) of potentially threatened species: Ethiopia, West Africa, central Tanzania, and southern Democratic Republic of the Congo. Our approach represents a first step toward data-driven conservation assessments applicable at continental scales providing crucial information for sustainable economic development prioritization.


Assuntos
Espécies em Perigo de Extinção , Extinção Biológica , África , Biodiversidade , Conservação dos Recursos Naturais/métodos , Bases de Dados Factuais , Plantas
2.
Int J Biometeorol ; 62(11): 1931-1944, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30215186

RESUMO

We characterized the flowering patterns of 45 epiphytic orchid species occurring in Cameroonian rainforests to explore the environmental and evolutionary forces driving their phenology. We used a dataset of 3470 flowering events recorded over a period of 11 years in the Yaoundé living collection (82% of the flowering events) and from in situ observations (18% of the flowering events) to (i) describe flowering frequency and timing and synchronization among taxa; (ii) test flowering patterns for phylogenetic relatedness at the generic level; and (iii) investigate the spatial patterns of phenology. An annual flowering pattern prevailed among the species selected for this study. The species-rich African genera Angraecum and Polystachya are characterized by subannual and annual frequency patterns, respectively. However, in terms of flowering time, no phylogenetic signal was detected for the four most diverse genera (Ancistrorhynchus, Angraecum, Bulbophyllum, and Polystachya). Results suggest also an important role of photoperiod and precipitation as climatic triggers of flowering patterns. Moreover, 16% of the taxa cultivated ex situ, mostly Polystachya, showed significant differences in flowering time between individuals originating from distinct climatic regions, pointing toward the existence of phenological ecotypes. Phenological plasticity, suggested by the lack of synchronized flowering in spatially disjunct populations of Polystachya, could explain the widespread radiation of this genus throughout tropical Africa. Our study highlights the need to take the spatial pattern of flowering time into account when interpreting phylogeographic patterns in central African rainforests.


Assuntos
Orchidaceae , Filogenia , Floresta Úmida , Camarões , Flores , Estações do Ano
3.
Sci Rep ; 5: 13156, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26279193

RESUMO

Large tropical trees and a few dominant species were recently identified as the main structuring elements of tropical forests. However, such result did not translate yet into quantitative approaches which are essential to understand, predict and monitor forest functions and composition over large, often poorly accessible territories. Here we show that the above-ground biomass (AGB) of the whole forest can be predicted from a few large trees and that the relationship is proved strikingly stable in 175 1-ha plots investigated across 8 sites spanning Central Africa. We designed a generic model predicting AGB with an error of 14% when based on only 5% of the stems, which points to universality in forest structural properties. For the first time in Africa, we identified some dominant species that disproportionally contribute to forest AGB with 1.5% of recorded species accounting for over 50% of the stock of AGB. Consequently, focusing on large trees and dominant species provides precise information on the whole forest stand. This offers new perspectives for understanding the functioning of tropical forests and opens new doors for the development of innovative monitoring strategies.


Assuntos
Florestas , Modelos Biológicos , África , Biomassa
4.
Mol Ecol ; 23(9): 2299-312, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24655106

RESUMO

Cycles of Quaternary climatic change are assumed to be major drivers of African rainforest dynamics and evolution. However, most hypotheses on past vegetation dynamics relied on palaeobotanical records, an approach lacking spatial resolution, and on current patterns of species diversity and endemism, an approach confounding history and environmental determinism. In this context, a comparative phylogeographical study of rainforest species represents a complementary approach because Pleistocene climatic fluctuations may have left interpretable signatures in the patterns of genetic diversity within species. Using 1274 plastid DNA sequences from eight tree species (Afrostyrax kamerunensis, A. lepidophyllus, Erythrophleum suaveolens, Greenwayodendron suaveolens, Milicia excelsa, Santiria trimera, Scorodophloeus zenkeri and Symphonia globulifera) sampled in 50 populations of Atlantic Central Africa (ACA), we averaged divergence across species to produce the first map of the region synthesizing genetic distinctiveness and standardized divergence within and among localities. Significant congruence in divergence was detected mostly among five of the eight species and was stronger in the northern ACA. This pattern is compatible with a scenario of past forest fragmentation and recolonization whereby forests from eastern Cameroon and northeastern Gabon would have been more affected by past climatic change than those of western Cameroon (where one or more refugia would have occurred). By contrast, southern ACA (Gabon) displayed low congruence among species that may reflect less drastic past forest fragmentation or a more complex history of vegetation changes. Finally, we also highlight the potential impact of current environmental barriers on spatial genetic structures.


Assuntos
Mudança Climática , Evolução Molecular , Variação Genética , Genética Populacional , Árvores/genética , África Central , DNA de Cloroplastos/genética , DNA de Plantas/genética , Haplótipos , Filogenia , Filogeografia , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...