Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(7): 11204-11217, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35792576

RESUMO

Nanoscale sulfur can be a multifunctional agricultural amendment to enhance crop nutrition and suppress disease. Pristine (nS) and stearic acid coated (cS) sulfur nanoparticles were added to soil planted with tomatoes (Solanum lycopersicum) at 200 mg/L soil and infested with Fusarium oxysporum. Bulk sulfur, ionic sulfate, and healthy controls were included. Orthogonal end points were measured in two greenhouse experiments, including agronomic and photosynthetic parameters, disease severity/suppression, mechanistic biochemical and molecular end points including the time-dependent expression of 13 genes related to two S bioassimilation and pathogenesis-response, and metabolomic profiles. Disease reduced the plant biomass by up to 87%, but nS and cS amendment significantly reduced disease as determined by area-under-the-disease-progress curve by 54 and 56%, respectively. An increase in planta S accumulation was evident, with size-specific translocation ratios suggesting different uptake mechanisms. In vivo two-photon microscopy and time-dependent gene expression revealed a nanoscale-specific elemental S bioassimilation pathway within the plant that is separate from traditional sulfate accumulation. These findings correlate well with time-dependent metabolomic profiling, which exhibited increased disease resistance and plant immunity related metabolites only with nanoscale treatment. The linked gene expression and metabolomics data demonstrate a time-sensitive physiological window where nanoscale stimulation of plant immunity will be effective. These findings provide mechanistic understandings of nonmetal nanomaterial-based suppression of plant disease and significantly advance sustainable nanoenabled agricultural strategies to increase food production.


Assuntos
Solanum lycopersicum , Enxofre/farmacologia , Doenças das Plantas/prevenção & controle , Solo/química , Plantas/metabolismo , Sulfatos/metabolismo
2.
Arch Microbiol ; 193(4): 307-12, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21184215

RESUMO

The Verrucomicrobia are a bacterial group of growing interest due to their environmental ubiquity as free-living and host-associated microbes. They also exhibit an unusual compartmentalized cell plan, shared with members of neighboring phyla that include the Planctomycete bacteria. However, Verrucomicrobia are currently difficult to study, due to a lack of available genetic tools that would permit robust testing of hypotheses formulated from ecological and genomic data. To our knowledge, there are no published studies describing the transformation of exogenous DNA into any members of the Verrucomicrobia (or the neighboring phylum containing Planctomycetes). Here, we present a procedure for the transformation of DNA into Verrucomicrobium spinosum DSM 4136(T) via electroporation and the first description of a random transposon mutant library in this organism. We anticipate that this approach could be applied successfully to other Verrucomicrobia, providing opportunities to test the role of predicted gene function in ecological interactions and identify genes associated with the distinctive Planctomycete-Verrucomicrobial cell plan.


Assuntos
Bactérias/genética , Mutagênese Insercional/métodos , Retroelementos , DNA Bacteriano/genética , Eletroporação , Biblioteca Gênica , Filogenia , Análise de Sequência de DNA , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...