Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 34(6): ar49, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36322412

RESUMO

Cells around epithelial wounds must first become aware of the wound's presence in order to initiate the wound-healing process. An initial response to an epithelial wound is an increase in cytosolic calcium followed by complex calcium-signaling events. While these calcium signals are driven by both physical and chemical wound responses, cells around the wound will all be equipped with the same cellular components to produce and interact with the calcium signals. Here we have developed a mathematical model in the context of laser ablation of the Drosophila pupal notum that integrates tissue-level damage models with a cellular calcium-signaling toolkit. The model replicates experiments in the contexts of control wounds as well as knockdowns of specific cellular components, but it also provides new insights that are not easily accessible experimentally. The model suggests that cell-cell variability is necessary to produce calcium-signaling events observed in experiments; it quantifies calcium concentrations during wound-induced signaling events, and it shows that intercellular transfer of the molecule IP3 is required to coordinate calcium signals across distal cells around the wound. The mathematical model developed here serves as a framework for quantitative studies in both wound signaling and calcium signaling in the Drosophila system.


Assuntos
Cálcio , Drosophila , Animais , Cálcio/metabolismo , Drosophila/metabolismo , Lasers , Sinalização do Cálcio , Modelos Teóricos
2.
Dev Cell ; 56(15): 2160-2175.e5, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34273275

RESUMO

The presence of a wound triggers surrounding cells to initiate repair mechanisms, but it is not clear how cells initially detect wounds. In epithelial cells, the earliest known wound response, occurring within seconds, is a dramatic increase in cytosolic calcium. Here, we show that wounds in the Drosophila notum trigger cytoplasmic calcium increase by activating extracellular cytokines, Growth-blocking peptides (Gbps), which initiate signaling in surrounding epithelial cells through the G-protein-coupled receptor Methuselah-like 10 (Mthl10). Latent Gbps are present in unwounded tissue and are activated by proteolytic cleavage. Using wing discs, we show that multiple protease families can activate Gbps, suggesting that they act as a generalized protease-detector system. We present experimental and computational evidence that proteases released during wound-induced cell damage and lysis serve as the instructive signal: these proteases liberate Gbp ligands, which bind to Mthl10 receptors on surrounding epithelial cells, and activate downstream release of calcium.


Assuntos
Epitélio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Cicatrização/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Citosol/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Epiteliais/metabolismo , Epitélio/fisiologia , Peptídeos/metabolismo , Proteólise , Ferimentos e Lesões/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...