Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-25019878

RESUMO

We explore the evolution of a splash when a liquid drop impacts a smooth dry surface. There are two splashing regimes that occur when the liquid viscosity is varied as is evidenced by its dependence on ambient gas pressure. A high-viscosity drop splashes by emitting a thin sheet of liquid from a spreading liquid lamella long after the drop has first contacted the solid. Likewise, we find that there is also a delay in the ejection of a thin sheet when a low-viscosity drop splashes. We show how the ejection time of the thin sheet depends on liquid viscosity and ambient gas pressure.


Assuntos
Modelos Teóricos , Viscosidade , Gases , Óleos , Pressão , Silicones , Propriedades de Superfície
2.
Phys Rev Lett ; 109(5): 054501, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-23006177

RESUMO

A liquid drop impacting a solid surface may splash either by emitting a thin liquid sheet that subsequently breaks apart or by promptly ejecting droplets from the advancing liquid-solid contact line. Using high-speed imaging, we show that surface roughness and air pressure influence both mechanisms. Roughness inhibits thin-sheet formation even though it also increases prompt splashing at the advancing contact line. If the air pressure is lowered, droplet ejection is suppressed not only during thin-sheet formation but also for prompt splashing.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(3 Pt 2): 036302, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21230166

RESUMO

After impact onto a smooth dry surface, a drop of viscous liquid initially spreads in the form of a thick lamella. If the drop splashes, it first emits a thin fluid sheet that can ultimately break up into droplets causing the splash. Ambient gas is crucial for creating this thin sheet. The time for sheet ejection, t{ejt}, depends on impact velocity, liquid viscosity, gas pressure, and molecular weight. A central air bubble is trapped below the drop at pressures even below that necessary for this sheet formation. In addition, air bubbles are entrained underneath the spreading lamella when the ejected sheet is present. Air entrainment ceases at a lamella velocity that is independent of drop impact velocity as well as ambient gas pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...