Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Front Nutr ; 11: 1390223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021604

RESUMO

In recent years there has been increased interest in identifying biological signatures of food consumption for use as biomarkers. Traditional metabolomics-based biomarker discovery approaches rely on multivariate statistics which cannot differentiate between host- and food-derived compounds, thus novel approaches to biomarker discovery are required to advance the field. To this aim, we have developed a new method that combines global untargeted stable isotope traced metabolomics and a machine learning approach to identify biological signatures of cruciferous vegetable consumption. Participants consumed a single serving of broccoli (n = 16), alfalfa sprouts (n = 16) or collard greens (n = 26) which contained either control unlabeled metabolites, or that were grown in the presence of deuterium-labeled water to intrinsically label metabolites. Mass spectrometry analysis indicated 133 metabolites in broccoli sprouts and 139 metabolites in the alfalfa sprouts were labeled with deuterium isotopes. Urine and plasma were collected and analyzed using untargeted metabolomics on an AB SCIEX TripleTOF 5,600 mass spectrometer. Global untargeted stable isotope tracing was completed using openly available software and a novel random forest machine learning based classifier. Among participants who consumed labeled broccoli sprouts or collard greens, 13 deuterium-incorporated metabolomic features were detected in urine representing 8 urine metabolites. Plasma was analyzed among collard green consumers and 11 labeled features were detected representing 5 plasma metabolites. These deuterium-labeled metabolites represent potential biological signatures of cruciferous vegetables consumption. Isoleucine, indole-3-acetic acid-N-O-glucuronide, dihydrosinapic acid were annotated as labeled compounds but other labeled metabolites could not be annotated. This work presents a novel framework for identifying biological signatures of food consumption for biomarker discovery. Additionally, this work presents novel applications of metabolomics and machine learning in the life sciences.

2.
Cell Rep ; 43(4): 114110, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607912

RESUMO

Transmembrane transporter proteins are essential for maintaining cellular homeostasis and, as such, are key drug targets. Many transmembrane transporter proteins are known to undergo large structural rearrangements during their functional cycles. Despite the wealth of detailed structural and functional data available for these systems, our understanding of their dynamics and, consequently, how they function is generally limited. We introduce an innovative approach that enables us to directly measure the dynamics and stability of interdomain interactions of transmembrane proteins using optical tweezers. Focusing on the osmoregulatory ATP-binding cassette transporter OpuA from Lactococcus lactis, we examine the mechanical properties and potential interactions of its substrate-binding domains. Our measurements are performed in lipid nanodiscs, providing a native-mimicking environment for the transmembrane protein. The technique provides high spatial and temporal resolution and allows us to study the functionally relevant motions and interdomain interactions of individual transmembrane transporter proteins in real time in a lipid bilayer.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias , Lactococcus lactis , Pinças Ópticas , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Lactococcus lactis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Ligação Proteica , Domínios Proteicos , Imagem Individual de Molécula , Estabilidade Proteica , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química
3.
Curr Protoc ; 4(3): e992, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38439570

RESUMO

Oxylipins are oxidized metabolites of polyunsaturated fatty acids (PUFAs). They represent a class of risk markers and/or therapeutic targets for diseases associated with inflammation, including cardiovascular disease and brain disorders. Because the biological activities of free PUFAs and oxylipins depend on their chemical structures and concentrations, monitoring PUFAs and oxylipin levels in biological systems is critical for understanding their roles in health and disease. Traditionally, accurate quantification of free PUFAs and oxylipins in biological samples was performed separately, as PUFAs are often 1000-fold more abundant than the derived oxidized fatty acids (oxylipins). This article describes a liquid chromatography multiple reaction monitoring tandem mass spectrometry method for the quantitative analysis of five free PUFAs and 88 oxylipins in various biological fluids, including plasma, platelet supernatants, and tissues. The same approach can also be used in conjunction with an alkaline hydrolysis step to quantify total oxylipins in fish oils. We observed that in some samples, linoleic acid levels in plasma and eicosapentaenoic acid and arachidonic acid levels in brain tissue were above the upper limit of quantification. To address this issue, we developed a data analysis method to obtain PUFA and oxylipin concentrations in these samples without additional sample preparation, thus significantly saving time and labor. © 2024 Wiley Periodicals LLC. Basic Protocol: Quantification of polyunsaturated fatty acids (PUFAs) and oxylipins using liquid chromatography multiple reaction monitoring tandem mass spectrometry Support Protocol 1: Preparation of internal standard mixed working solution Support Protocol 2: Preparation of standard mixed stock solution Support Protocol 3: Preparation of standard mixed working solution Alternate Protocol 1: Extraction and quantitation of free PUFAs and oxylipins from mouse brain tissue Alternate Protocol 2: Extraction and quantitation of total PUFAs and oxylipins from fish oil.


Assuntos
Ácidos Graxos , Oxilipinas , Animais , Camundongos , Estresse Oxidativo , Ácidos Graxos não Esterificados , Ácido Linoleico , Óleos de Peixe
4.
Molecules ; 29(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38398590

RESUMO

Rapid screening of botanical extracts for the discovery of bioactive natural products was performed using a fractionation approach in conjunction with flow-injection high-resolution mass spectrometry for obtaining chemical fingerprints of each fraction, enabling the correlation of the relative abundance of molecular features (representing individual phytochemicals) with the read-outs of bioassays. We applied this strategy for discovering and identifying constituents of Centella asiatica (C. asiatica) that protect against Aß cytotoxicity in vitro. C. asiatica has been associated with improving mental health and cognitive function, with potential use in Alzheimer's disease. Human neuroblastoma MC65 cells were exposed to subfractions of an aqueous extract of C. asiatica to evaluate the protective benefit derived from these subfractions against amyloid ß-cytotoxicity. The % viability score of the cells exposed to each subfraction was used in conjunction with the intensity of the molecular features in two computational models, namely Elastic Net and selectivity ratio, to determine the relationship of the peak intensity of molecular features with % viability. Finally, the correlation of mass spectral features with MC65 protection and their abundance in different sub-fractions were visualized using GNPS molecular networking. Both computational methods unequivocally identified dicaffeoylquinic acids as providing strong protection against Aß-toxicity in MC65 cells, in agreement with the protective effects observed for these compounds in previous preclinical model studies.


Assuntos
Doença de Alzheimer , Centella , Ácido Quínico/análogos & derivados , Triterpenos , Humanos , Peptídeos beta-Amiloides/toxicidade , Doença de Alzheimer/tratamento farmacológico , Extratos Vegetais/farmacologia , Cognição , Centella/química , Triterpenos/análise , Bioensaio , Simulação por Computador
5.
Gut Microbes ; 16(1): 2315633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358253

RESUMO

Xanthohumol (XN), a polyphenol found in the hop plant (Humulus lupulus), has antioxidant, anti-inflammatory, prebiotic, and anti-hyperlipidemic activity. Preclinical evidence suggests the gut microbiome is essential in mediating these bioactivities; however, relatively little is known about XN's impact on human gut microbiota in vivo. We conducted a randomized, triple-blinded, placebo-controlled clinical trial (ClinicalTrials.gov NCT03735420) to determine safety and tolerability of XN in healthy adults. Thirty healthy participants were randomized to 24 mg/day XN or placebo for 8 weeks. As secondary outcomes, quantification of bacterial metabolites and 16S rRNA gene sequencing were utilized to explore the relationships between XN supplementation, gut microbiota, and biomarkers of gut health. Although XN did not significantly change gut microbiota composition, it did re-shape individual taxa in an enterotype-dependent manner. High levels of inter-individual variation in metabolic profiles and bioavailability of XN metabolites were observed. Moreover, reductions in microbiota-derived bile acid metabolism were observed, which were specific to Prevotella and Ruminococcus enterotypes. These results suggest interactions between XN and gut microbiota in healthy adults are highly inter-individualized and potentially indicate that XN elicits effects on gut health in an enterotype-dependent manner.


Assuntos
Microbioma Gastrointestinal , Propiofenonas , Adulto , Humanos , RNA Ribossômico 16S/genética , Flavonoides/farmacologia , Prebióticos
6.
Mol Nutr Food Res ; 68(4): e2300286, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38143283

RESUMO

SCOPE: The glucosinolate glucoraphanin from broccoli is converted to sulforaphane (SFN) or sulforaphane-nitrile (SFN-NIT) by plant enzymes or the gut microbiome. Human feeding studies typically observe high inter-individual variation in absorption and excretion of SFN, however, the source of this variation is not fully known. To address this, a human feeding trial to comprehensively evaluate inter-individual variation in the absorption and excretion of all known SFN metabolites in urine, plasma, and stool, and tested the hypothesis that gut microbiome composition influences inter-individual variation in total SFN excretion has been conducted. METHODS AND RESULTS: Participants (n = 55) consumed a single serving of broccoli or alfalfa sprouts and plasma, stool, and total urine are collected over 72 h for quantification of SFN metabolites and gut microbiome profiling using 16S gene sequencing. SFN-NIT excretion is markedly slower than SFN excretion (72 h vs 24 h). Members of genus Bifidobacterium, Dorea, and Ruminococcus torques are positively associated with SFN metabolite excretion while members of genus Alistipes and Blautia has a negative association. CONCLUSION: This is the first report of SFN-NIT metabolite levels in human plasma, urine, and stool following consumption of broccoli sprouts. The results help explain factors driving inter-individual variation in SFN metabolism and are relevant for precision nutrition.


Assuntos
Brassica , Microbioma Gastrointestinal , Nitrilas , Humanos , Isotiocianatos/metabolismo , Sulfóxidos/metabolismo , Glucosinolatos/metabolismo
7.
J Chromatogr Open ; 42023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37789901

RESUMO

Centella asiatica (CA) is a culinary vegetable and well-known functional food that is widely used as a medicinal herb and dietary supplement. CA is rich in pentacyclic triterpenes (TTs), including asiaticoside (AS), madecassoside (MS) and the related aglycones asiatic acid (AA), madecassic acid (MA). Traditionally, TTs have been associated with the bioactivity and health promoting effect of CA. Recently, mono-caffeoylquinic acids (MonoCQAs) and di-caffeoylquinic acids (DiCQAs) have been found to contribute to the bioactivity of CA as well. This work reports an analytical strategy based on liquid chromatography coupled to multiple reaction monitoring mass spectrometry (LC-MRM-MS) for the simultaneous rapid and accurate quantification of 12 bioactive compounds in CA, namely AS, MS, AA, MA, 5-CQA, 4-CQA, 3-CQA, 1,3-DiCQA, 3,4-DiCQA, 1,5-DiCQA, 3,5-DiCQA, 4,5-DiCQA. Method selectivity, accuracy, precision, repeatability, robustness, linearity range, limit of detection (LOD), and limit of quantitation (LOQ) were validated. The validated LC-MRM-MS method has been successfully applied to quantify the 12 bioactive compounds in CA aqueous extracts and two related formulations: a standardized CA product (CAP) used in a phase I clinical trial and formulated CA rodent diets used in preclinical studies. The validated method allows us to support the standardization of CA products used for clinical trials and conduct routine LC-MRM-MS analyses of formulated preclinical diets to confirm correct levels of CA phytochemical markers.

8.
RSC Adv ; 13(42): 29324-29331, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37829707

RESUMO

Xanthohumol, the principle prenylflavonoid found in hops (Humulus lupulus) and a reported anti-inflammatory agent, has great potential for pharmaceutical interventions related to inflammatory disorders in the gut. A suite of probes was prepared from xanthohumol and its structural isomer isoxanthohumol to enable profiling of both protein affinity binding and catalytic enzyme reactivity. The regiochemistry of the reactive group on the probes was altered to reveal how probe structure dictates protein labeling, and which probes best emulate the natural flavonoids. Affinity- and activity-based probes were applied to Escherichia coli, and protein labeling was measured by chemoproteomics. Structurally dependent activity-based probe protein labeling demonstrates how subtle alterations in flavonoid structure and probe reactive groups can result in considerably different protein interactions. This work lays the groundwork to expand upon unexplored cellular activities related to xanthohumol interactions, metabolism, and anti-inflammatory mechanisms.

9.
Front Cell Dev Biol ; 11: 1214962, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621774

RESUMO

Computational models of cells cannot be considered complete unless they include the most fundamental process of life, the replication and inheritance of genetic material. By creating a computational framework to model systems of replicating bacterial chromosomes as polymers at 10 bp resolution with Brownian dynamics, we investigate changes in chromosome organization during replication and extend the applicability of an existing whole-cell model (WCM) for a genetically minimal bacterium, JCVI-syn3A, to the entire cell-cycle. To achieve cell-scale chromosome structures that are realistic, we model the chromosome as a self-avoiding homopolymer with bending and torsional stiffnesses that capture the essential mechanical properties of dsDNA in Syn3A. In addition, the conformations of the circular DNA must avoid overlapping with ribosomes identitied in cryo-electron tomograms. While Syn3A lacks the complex regulatory systems known to orchestrate chromosome segregation in other bacteria, its minimized genome retains essential loop-extruding structural maintenance of chromosomes (SMC) protein complexes (SMC-scpAB) and topoisomerases. Through implementing the effects of these proteins in our simulations of replicating chromosomes, we find that they alone are sufficient for simultaneous chromosome segregation across all generations within nested theta structures. This supports previous studies suggesting loop-extrusion serves as a near-universal mechanism for chromosome organization within bacterial and eukaryotic cells. Furthermore, we analyze ribosome diffusion under the influence of the chromosome and calculate in silico chromosome contact maps that capture inter-daughter interactions. Finally, we present a methodology to map the polymer model of the chromosome to a Martini coarse-grained representation to prepare molecular dynamics models of entire Syn3A cells, which serves as an ultimate means of validation for cell states predicted by the WCM.

10.
Curr Res Food Sci ; 6: 100521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266414

RESUMO

Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, are a rapidly growing public health concern worldwide. These diseases are heterogeneous at the clinical, immunological, molecular, genetic, and microbial level, but characteristically involve a disrupted immune-microbiome axis. Shortcomings in conventional treatment options warrant the need for novel therapeutic strategies to mitigate these life-long and relapsing disorders of the gastrointestinal tract. Polyphenols, a diverse group of phytochemicals, have gained attention as candidate treatments due to their array of biological effects. Polyphenols exert broad anti-inflammatory and antioxidant effects through the modulation of cellular signaling pathways and transcription factors important in IBD progression. Polyphenols also bidirectionally modulate the gut microbiome, supporting commensals and inhibiting pathogens. One of the primary means by which gut microbiota interface with the host is through the production of metabolites, which are small molecules produced as intermediate or end products of metabolism. There is growing evidence to support that modulation of the gut microbiome by polyphenols restores microbially derived metabolites critical to the maintenance of intestinal homeostasis that are adversely disrupted in IBD. This review aims to define the therapeutic targets of polyphenols that may be important for mitigation of IBD symptoms, as well as to collate evidence for their clinical use from randomized clinical trials.

11.
Front Chem ; 11: 1106495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742032

RESUMO

The ultimate microscope, directed at a cell, would reveal the dynamics of all the cell's components with atomic resolution. In contrast to their real-world counterparts, computational microscopes are currently on the brink of meeting this challenge. In this perspective, we show how an integrative approach can be employed to model an entire cell, the minimal cell, JCVI-syn3A, at full complexity. This step opens the way to interrogate the cell's spatio-temporal evolution with molecular dynamics simulations, an approach that can be extended to other cell types in the near future.

12.
Burns ; 49(1): 120-128, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35351355

RESUMO

Treatment for pediatric burns includes fluid resuscitation with formulas estimating fluid requirements based on weight and/or body surface area (BSA) with percent total body surface area burn (%TBSA burn). This study evaluates the risk of complications using weight-based resuscitation in children following burn injuries and compares fluid estimates with those that incorporate BSA. A retrospective review was conducted on 110 children admitted to an ABA-verified urban pediatric burn center over 12 years. Patients had ≥ 15% TBSA burn and were resuscitated with the weight-based Parkland formula. BSA-based Galveston and BSA-incorporated Cincinnati formula predictions were calculated. Complications were collected throughout hospital stay. Patients were classified into weight groups based on percentile. This study included 11 underweight, 60 normal weight, 18 overweight, and 21 obese children. Total fluid administered was higher as percentile increased; however, overweight children received more fluid than the obese (p = 0.023). The Galveston formula underpredicted fluid given over the first 24 h post-injury (p = 0.042); the Parkland and Cincinnati formula predictions did not significantly differ from fluids given. Further research is needed to determine the value of weight-based vs BSA-based or incorporated formulas in reducing risk of complications.


Assuntos
Queimaduras , Hidratação , Criança , Humanos , Superfície Corporal , Queimaduras/terapia , Hidratação/efeitos adversos , Hidratação/métodos , Obesidade Infantil , Estudos Retrospectivos , Peso Corporal
13.
Blood Adv ; 7(8): 1366-1378, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36219587

RESUMO

Low-density lipoprotein (LDL) contributes to atherogenesis and cardiovascular disease through interactions with peripheral blood cells, especially platelets. However, mechanisms by which LDL affects platelet activation and atherothrombosis, and how to best therapeutically target and safely prevent such responses remain unclear. Here, we investigate how oxidized low-density lipoprotein (oxLDL) enhances glycoprotein VI (GPVI)-mediated platelet hemostatic and procoagulant responses, and how traditional and emerging antiplatelet therapies affect oxLDL-enhanced platelet procoagulant activity ex vivo. Human platelets were treated with oxLDL and the GPVI-specific agonist, crosslinked collagen-related peptide, and assayed for hemostatic and procoagulant responses in the presence of inhibitors of purinergic receptors (P2YR), cyclooxygenase (COX), and tyrosine kinases. Ex vivo, oxLDL enhanced GPVI-mediated platelet dense granule secretion, α-granule secretion, integrin activation, thromboxane generation and aggregation, as well as procoagulant phosphatidylserine exposure and fibrin generation. Studies of washed human platelets, as well as platelets from mouse and nonhuman primate models of hyperlipidemia, further determined that P2YR antagonists (eg, ticagrelor) and Bruton tyrosine kinase inhibitors (eg, ibrutinib) reduced oxLDL-mediated platelet responses and procoagulant activity, whereas COX inhibitors (eg, aspirin) had no significant effect. Together, our results demonstrate that oxLDL enhances GPVI-mediated platelet procoagulant activity in a manner that may be more effectively reduced by P2YR antagonists and tyrosine kinase inhibitors compared with COX inhibitors.


Assuntos
Hemostáticos , Inibidores da Agregação Plaquetária , Humanos , Camundongos , Animais , Inibidores da Agregação Plaquetária/farmacologia , Lipoproteínas LDL/farmacologia
14.
Front Physiol ; 14: 1316186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260101

RESUMO

Introduction: The space environment astronauts experience during space missions consists of multiple environmental challenges, including microgravity. In this study, we assessed the behavioral and cognitive performances of male Fisher rats 2 months after sham irradiation or total body irradiation with photons in the absence or presence of simulated microgravity. We analyzed the plasma collected 9 months after sham irradiation or total body irradiation for distinct alterations in metabolic pathways and to determine whether changes to metabolic measures were associated with specific behavioral and cognitive measures. Methods: A total of 344 male Fischer rats were irradiated with photons (6 MeV; 3, 8, or 10 Gy) in the absence or presence of simulated weightlessness achieved using hindlimb unloading (HU). To identify potential plasma biomarkers of photon radiation exposure or the HU condition for behavioral or cognitive performance, we performed regression analyses. Results: The behavioral effects of HU on activity levels in an open field, measures of anxiety in an elevated plus maze, and anhedonia in the M&M consumption test were more pronounced than those of photon irradiation. Phenylalanine, tyrosine, and tryptophan metabolism, and phenylalanine metabolism and biosynthesis showed very strong pathway changes, following photon irradiation and HU in animals irradiated with 3 Gy. Here, 29 out of 101 plasma metabolites were associated with 1 out of 13 behavioral measures. In the absence of HU, 22 metabolites were related to behavioral and cognitive measures. In HU animals that were sham-irradiated or irradiated with 8 Gy, one metabolite was related to behavioral and cognitive measures. In HU animals irradiated with 3 Gy, six metabolites were related to behavioral and cognitive measures. Discussion: These data suggest that it will be possible to develop stable plasma biomarkers of behavioral and cognitive performance, following environmental challenges like HU and radiation exposure.

15.
Dis Model Mech ; 15(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36353888

RESUMO

Xanthohumol (XN) improves cognition of wild-type rodents on a high-fat diet (HFD). Bile acids and ceramide levels in the liver and hippocampus might be linked to these effects. XN modulates activity of the nuclear farnesoid X receptor (FXR; also known as NR1H4), the primary receptor for bile acids. To determine the role of FXR in the liver and intestine in mediating the effects of XN on cognitive performance, mice with intestine- and liver-specific FXR ablation (FXRIntestine-/- and FXRLiver-/-, respectively) on an HFD or an HFD containing XN were cognitively tested. XN improved cognitive performance in a genotype- and sex-dependent manner, with improved task learning in females (specifically wild-type), reversal learning in males (specifically wild-type and FXRIntestine-/- mutant) and spatial learning (both sexes). XN increased hippocampal diacylglycerol and sphingomyelin levels in females but decreased them in males. XN increased the ratio of shorter-chain to longer-chain ceramides and hexaceramides. Higher diacylglycerol and lower longer-chain ceramide and hexaceramide levels were linked to improved cognitive performance. Thus, the beneficial sex-dependent cognitive effects of XN are linked to changes in hippocampal diacylglycerol and ceramide levels. This article has an associated First Person interview with the first author of the paper.


Assuntos
Dieta Hiperlipídica , Diglicerídeos , Masculino , Camundongos , Animais , Fígado , Ácidos e Sais Biliares , Ceramidas , Cognição , Camundongos Endogâmicos C57BL
16.
Trials ; 23(1): 885, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273173

RESUMO

BACKGROUND: Xanthohumol (XN), a bioactive flavonoid from Humulus lupulus with anti-inflammatory properties, has potential benefits for patients with Crohn's disease (CD), a type of inflammatory bowel disease. We recently completed and published results of a placebo-controlled phase I clinical trial demonstrating the safety and tolerability of 24 mg XN daily for 8 weeks. The present study aims to evaluate the safety and tolerability of the same dose of XN adults with clinically active CD in a placebo-controlled phase II clinical trial. Additional aims will assess the impact of XN on inflammatory biomarkers, platelet function, CD clinical activity, and stool microbial composition. The metabolism of XN will also be evaluated. This article provides a model protocol for consideration in investigations of XN or other natural products in disease states. METHODS: A triple-masked, randomized, placebo-controlled trial will be conducted in adults with clinically active CD. Participants (n ≤ 32) will be randomized to either 24 mg encapsulated XN per day or placebo and followed for 8 weeks. Throughout the trial, participants will be queried for adverse events. Biomarkers of clinical safety, blood and stool markers of inflammation, platelet function, Crohn's Disease Activity Index score, stool microbial composition, and XN metabolite profiles in blood, urine, and stool will be assessed every 2 weeks. DISCUSSION: We describe the protocol for a phase II clinical trial that evaluates the safety and tolerability of XN in adults with active CD, as well as evaluate metabolism and mechanisms that are relevant to CD and other diseases with underlying inflammation and/or gut permeability. The effects of XN on inflammatory biomarkers, platelet function, the microbiota, and multi-omics biomarkers measured in this phase II trial of adults with CD will be compared to the effects of XN in healthy adults in our previous phase I trial. The results of the study will advance the evidence guiding the use of XN in patients with CD. TRIAL REGISTRATION: ClinialTrials.gov NCT04590508. Registered on October 19, 2020.


Assuntos
Produtos Biológicos , Doença de Crohn , Microbiota , Adulto , Humanos , Doença de Crohn/diagnóstico , Doença de Crohn/tratamento farmacológico , Flavonoides/efeitos adversos , Biomarcadores , Inflamação , Produtos Biológicos/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Ensaios Clínicos Fase II como Assunto
17.
Front Pharmacol ; 13: 954980, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278228

RESUMO

Consumption of a high fat diet (HFD) is linked to metabolic syndrome and cognitive impairments. This is exacerbated in age-related cognitive decline (ACD) and in individuals with a genetic risk for Alzheimer's disease (AD). Apolipoprotein E (apoE) is involved in cholesterol metabolism. In humans, there are three major isoforms, E2, E3, and E4. Compared to E3, E4 increases ACD and AD risk and vulnerability to the deleterious cognitive effects of a HFD. The plant compound Xanthohumol (XN) had beneficial effects on cognition and metabolism in C57BL/6J wild-type (WT) male mice put on a HFD at 9 weeks of age for 13 weeks. As the effects of XN in the context of a HFD in older WT, E3, and E4 female and male mice are not known, in the current study male and female WT, E3, and E4 mice were fed a HFD alone or a HFD containing 0.07% XN for 10 or 19 weeks, starting at 6 months of age, prior to the beginning of behavioral and cognitive testing. XN showed sex- and ApoE isoform-dependent effects on cognitive performance. XN-treated E4 and WT, but not E3, mice had higher glucose transporter protein levels in the hippocampus and cortex than HFD-treated mice. E3 and E4 mice had higher glucose transporter protein levels in the hippocampus and lower glucose transporter protein levels in the cortex than WT mice. In the standard experiment, regardless of XN treatment, E4 mice had nearly double as high ceramide and sphingomyelin levels than E3 mice and male mice had higher level of glycosylated ceramide than female mice. When the differential effects of HFD in E3 and E4 males were assessed, the arginine and proline metabolism pathway was affected. In the extended exposure experiment, in E3 males XN treatment affected the arginine and proline metabolism and the glycine, serine, and threonine metabolism. Myristic acid levels were decreased in XN-treated E3 males but not E3 females. These data support the therapeutic potential for XN to ameliorate HFD-induced cognitive impairments and highlight the importance of considering sex and ApoE isoform in determining who might most benefit from this dietary supplement.

18.
Nutrients ; 14(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36235577

RESUMO

Withania somnifera (WS) extracts have been used in traditional medicine for millennia to promote healthy aging and wellbeing. WS is now also widely used in Western countries as a nutritional supplement to extend healthspan and increase resilience against age-related changes, including sleep deficits and depression. Although human trials have supported beneficial effects of WS, the study designs have varied widely. Plant material is intrinsically complex, and extracts vary widely with the origin of the plant material and the extraction method. Commercial supplements can contain various other ingredients, and the characteristics of the study population can also be varied. To perform maximally controlled experiments, we used plant extracts analyzed for their composition and stability. We then tested these extracts in an inbred Drosophila line to minimize effects of the genetic background in a controlled environment. We found that a water extract of WS (WSAq) was most potent in improving physical fitness, while an ethanol extract (WSE) improved sleep in aged flies. Both extracts provided resilience against stress-induced behavioral changes. WSE contained higher levels of withanolides, which have been proposed to be active ingredients, than WSAq. Therefore, withanolides may mediate the sleep improvement, whereas so-far-unknown ingredients enriched in WSAq likely mediate the effects on fitness and stress-related behavior.


Assuntos
Withania , Vitanolídeos , Idoso , Animais , Drosophila melanogaster , Etanol , Humanos , Fenótipo , Extratos Vegetais/farmacologia , Água , Vitanolídeos/farmacologia
19.
Front Mol Biosci ; 9: 903130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928228

RESUMO

Scope: Nitrate supplementation is a popular ergogenic aid that improves exercise performance by reducing oxygen consumption during exercise. We investigated the effect of nitrate exposure and exercise on metabolic pathways in zebrafish liver. Materials and methods: Fish were exposed to sodium nitrate (606.9 mg/L), or control water, for 21 days and analyzed at intervals during an exercise test. We utilized untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and measured gene expression of 24 genes central to energy metabolism and redox signaling. Results: We observed a greater abundance of metabolites involved in endogenous nitric oxide (NO) metabolism and amino acid metabolism in nitrate-treated liver at rest, compared to rested controls. In the absence of exercise, nitrate treatment upregulated expression of genes central to nutrient sensing (pgc1a), protein synthesis (mtor) and purine metabolism (pnp5a and ampd1) and downregulated expression of genes involved in mitochondrial fat oxidation (acaca and cpt2). Conclusion: Our data support a role for sub-chronic nitrate treatment in the improvement of exercise performance, in part, by improving NO bioavailability, sparing arginine, and modulating hepatic gluconeogenesis and glycolytic capacity in the liver.

20.
Nat Prod Commun ; 17(7)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35875707

RESUMO

Phytochemicals from the genus, Fagonia, have been attracting increasing attention due to their potential beneficial effects on human health. Fagonia species contain various types of phytochemicals such as flavonoids, alkaloids, saponins, terpenoids, coumarins and tannins. In this study, we investigated the phytochemical composition of unhydrolyzed and acid-hydrolyzed extracts of Fagonia indica and their bioactivity toward breast cancer MCF-7 cells in vitro. The results revealed that F. indica contains phytochemicals consistent with the reported phytochemical composition of this Fagonia species, with greater amounts of aglycones detected in the hydrolyzed extract. The crude extract of F. indica without acid hydrolysis was found to be ineffective in inhibiting the growth of MCF-7 cells at doses below 1000 µg/mL. However, after acid hydrolysis (to mimic gastro-intestinal hydrolysis), the F. indica extract became growth-inhibitory to MCF-7 cells as low as 10 µg/mL and the cytotoxicity increased with increasing dose and time of treatment. The results suggest that F. indica extracts contain phytochemicals in glycosidic forms whose aglycones are active as anti-proliferative agents toward breast cancer cells in vitro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...