Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 4(3): e1700938, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29536038

RESUMO

We report the first characterization study of commercial prototype carbon nanotube (CNT) membranes consisting of sub-1.27-nm-diameter CNTs traversing a large-area nonporous polysulfone film. The membranes show rejection of NaCl and MgSO4 at higher ionic strengths than have previously been reported in CNT membranes, and specific size selectivity for analytes with diameters below 1.24 nm. The CNTs used in the membranes were arc discharge nanotubes with inner diameters of 0.67 to 1.27 nm. Water flow through the membranes was 1000 times higher than predicted by Hagen-Poiseuille flow, in agreement with previous CNT membrane studies. Ideal gas selectivity was found to deviate significantly from that predicted by both viscous and Knudsen flow, suggesting that surface diffusion effects may begin to dominate gas selectivity at this size scale.

2.
ACS Appl Mater Interfaces ; 8(3): 2306-17, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26735344

RESUMO

Poly(ethylene oxide) (PEO)-containing polymer membranes are attractive for CO2-related gas separations due to their high selectivity toward CO2. However, the development of PEO-rich membranes is frequently challenged by weak mechanical properties and a high crystallization tendency of PEO that hinders gas transport. Here we report a new series of highly CO2-selective, amorphous PEO-containing segmented copolymers prepared from commercial Jeffamine polyetheramines and pentiptycene-based polyimide. The copolymers are much more mechanically robust than the nonpentiptycene containing counterparts due to the molecular reinforcement mechanism of supramolecular chain threading and interlocking interactions induced by the pentiptycene structures, which also effectively suppresses PEO crystallization leading to a completely amorphous structure even at 60% PEO weight content. Membrane transport properties are sensitively affected by both PEO weight content and PEO chain length. A nonlinear correlation between CO2 permeability with PEO weight content was observed due to the competition between solubility and diffusivity contributions, whereby the copolymers change from being size-selective to solubility-selective when PEO content reaches 40%. CO2 selectivities over H2 and N2 increase monotonically with both PEO content and chain length, indicating strong CO2-philicity of the copolymers. The copolymer film with the longest PEO sequence (PEO2000) and highest PEO weight content (60%) showed a measured CO2 pure gas permeability of 39 Barrer, and ideal CO2/H2 and CO2/N2 selectivities of 4.1 and 46, respectively, at 35 °C and 3 atm, making them attractive for hydrogen purification and carbon capture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...