Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Microbiome ; 9(1): 143, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34154659

RESUMO

BACKGROUND: Gut microbiomes, such as the rumen, greatly influence host nutrition due to their feed energy-harvesting capacity. We investigated temporal ecological interactions facilitating energy harvesting at the fresh perennial ryegrass (PRG)-biofilm interface in the rumen using an in sacco approach and prokaryotic metatranscriptomic profiling. RESULTS: Network analysis identified two distinct sub-microbiomes primarily representing primary (≤ 4 h) and secondary (≥ 4 h) colonisation phases and the most transcriptionally active bacterial families (i.e Fibrobacteriaceae, Selemondaceae and Methanobacteriaceae) did not interact with either sub-microbiome, indicating non-cooperative behaviour. Conversely, Prevotellaceae had most transcriptional activity within the primary sub-microbiome (focussed on protein metabolism) and Lachnospiraceae within the secondary sub-microbiome (focussed on carbohydrate degradation). Putative keystone taxa, with low transcriptional activity, were identified within both sub-microbiomes, highlighting the important synergistic role of minor bacterial families; however, we hypothesise that they may be 'cheating' in order to capitalise on the energy-harvesting capacity of other microbes. In terms of chemical cues underlying transition from primary to secondary colonisation phases, we suggest that AI-2-based quorum sensing plays a role, based on LuxS gene expression data, coupled with changes in PRG chemistry. CONCLUSIONS: In summary, we show that fresh PRG-attached prokaryotes are resilient and adapt quickly to changing niches. This study provides the first major insight into the complex temporal ecological interactions occurring at the plant-biofilm interface within the rumen. The study also provides valuable insights into potential plant breeding strategies for development of the utopian plant, allowing optimal sustainable production of ruminants. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Lolium , Microbiota , Animais , Microbioma Gastrointestinal/genética , Humanos , Microbiota/genética , Melhoramento Vegetal , Rúmen
4.
Sci Rep ; 5: 11302, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26062748

RESUMO

The ability to assemble DNA sequences de novo through efficient and powerful DNA fabrication methods is one of the foundational technologies of synthetic biology. Gene synthesis, in particular, has been considered the main driver for the emergence of this new scientific discipline. Here we describe RapGene, a rapid gene assembly technique which was successfully tested for the synthesis and cloning of both prokaryotic and eukaryotic genes through a ligation independent approach. The method developed in this study is a complete bacterial gene synthesis platform for the quick, accurate and cost effective fabrication and cloning of gene-length sequences that employ the widely used host Escherichia coli.


Assuntos
DNA/síntese química , Escherichia coli/genética , Engenharia Genética/métodos , Biologia Sintética/métodos , Animais , DNA/genética , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Fator de Transcrição GATA1/genética , Genes Bacterianos/genética , Genes Sintéticos , Proteínas de Fluorescência Verde/genética , Hidrozoários/genética , Reação em Cadeia da Polimerase/métodos , Espectinomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...