Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 17(8): 1142-1145, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16731000

RESUMO

13C labeling is introduced as an alternative to deuterium labeling for analysis of organic materials using secondary ion mass spectrometry (SIMS). A model macromolecular system composed of polystyrene (PS) and poly(methyl methacrylate) (PMMA) was used to compare the effects of isotopic labeling using both deuterium substitution (dPS) and 13C labeling (13C-PS). Clear evidence is shown that deuterium labeling does introduce changes in the thermodynamic properties of the system, with the observation of segregation of dPS to an hPS:dPS/hPMMA interface. This type of behavior could significantly impact many types of investigations due to the potential for improper interpretation of experimental results as a consequence of labeling-induced artifacts. 13C labeling is shown to provide a true tracer for analysis using SIMS.


Assuntos
Isótopos de Carbono/química , Marcação por Isótopo/métodos , Compostos Orgânicos/química , Polimetil Metacrilato/química , Poliestirenos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
Anal Chem ; 78(10): 3452-60, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16689549

RESUMO

13C labeling is introduced as a tracer for depth profiling of polymer films and multilayers using secondary ion mass spectrometry (SIMS). Deuterium substitution has traditionally been used in depth profiling of polymers but can affect the phase behavior of the polymer constituents with reported changes in both bulk-phase behavior and surface and interfacial interactions. SIMS can provide contrast by examining various functional groups, chemical moieties, or isotopic labels. 13C-Labeled PS (13C-PS) and unlabeled PS (12C-PS) and PMMA were synthesized using atom-transfer radical polymerization and assembled in several model thin-film systems. Depth profiles were recorded using a Cameca IMS-6f magnetic sector mass spectrometer using both 6.0-keV impact energy Cs+ and 5.5-keV impact energy O2+ primary ion bombardment with detection of negative and positive secondary ions, respectively. Although complete separation of 12C1H from 13C is achieved using both primary ion species, 6.0-keV Cs+ clearly shows improved detection sensitivity and signal-to-noise ratio for detection of 12C, 12C1H, and 13C secondary ions. The use of Cs+ primary ion bombardment results in somewhat anomalous, nonmonotonic changes in the 12C, 12C1H, and 13C secondary ion yields through the PS/PMMA interface; however, it is shown that this behavior is not due to sample charging. Through normalization of the 13C secondary ion yield to the total C (12C + 13C) ion yield, the observed effects through the PS/PMMA interface can be greatly minimized, thereby significantly improving analysis of polymer films and multilayers using SIMS. Mass spectra of 13C-PS and 12C-PS were also analyzed using a PHI TRIFT I time-of-flight mass spectrometer, with 15-keV Ga+ primary ion bombardment and detection of positive secondary ions. The (12)C7(1)H7 ion fragment and its 13C-enriched analogues have significant secondary ion yields with negligible mass interferences, providing an early indication of the potential for future use of this technique for cluster probe depth profiling of high molecular weight 13C-labeled fragments.

3.
Microsc Microanal ; 9(3): 216-36, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12807673

RESUMO

The focused ion beam (FIB) tool has been successfully used as both a stand alone analytical instrument and a means to prepare specimens for subsequent analysis by SEM, TEM, SIMS, XPS, and AUGER. In this work, special emphasis is given to TEM specimen preparation by the FIB lift-out technique. The fundamental ion/solid interactions that govern the FIB milling process are examined and discussed with respect to the preparation of electron transparent membranes. TRIM, a Monte Carlo simulation code, is used to physically model variables that influence FIB sputtering behavior. The results of such computer generated models are compared with empirical observations in a number of materials processed with an FEI 611 FIB workstation. The roles of incident ion attack angle, beam current, trench geometry, raster pattern, and target-material-dependent removal rates are considered. These interrelationships are used to explain observed phenomena and predict expected milling behaviors, thus increasing the potential for the FIB to be used more efficiently with reproducible results.


Assuntos
Microscopia Eletrônica/instrumentação , Simulação por Computador , Tomada de Decisões Assistida por Computador , Microanálise por Sonda Eletrônica/instrumentação , Íons , Microscopia Eletrônica/métodos , Modelos Estruturais , Método de Monte Carlo , Espectrometria de Massa de Íon Secundário/instrumentação
4.
Microsc Res Tech ; 41(4): 285-90, 1998 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-9633946

RESUMO

A site-specific technique for cross-section transmission electron microscopy specimen preparation of difficult materials is presented. A focused ion beam was used to slice an electron transparent membrane from a specific area of interest within a bulk sample. Micromanipulation lift-out procedures were then used to transport the electron-transparent specimen to a carbon-coated copper grid for subsequent TEM analysis. The FIB (focused ion beam) lift-out technique is a fast method for the preparation of site-specific TEM specimens. The versatility of this technique is demonstrated by presenting cross-sectioned TEM specimens from several types of materials systems, including a multi-layered integrated circuit on a Si substrate, a galvanized steel, a polycrystalline SiC ceramic fiber, and a ZnSe optical ceramic. These specimens have both complex surface geometry and interfaces with complex chemistry. FIB milling was performed sequentially through different layers of cross-sectioned materials so that preferential sputtering was not a factor in preparing TEM specimens. The FIB lift-out method for TEM analysis is a useful technique for the study of complex materials systems for TEM analysis.


Assuntos
Microscopia Eletrônica/métodos , Manejo de Espécimes/métodos , Cerâmica , Metais , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA