Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 49(17): 10357-65, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26226398

RESUMO

Determining key reaction pathways involving uranium and iron oxyhydroxides under oxic and anoxic conditions is essential for understanding uranium mobility as well as other iron oxyhydroxide mediated processes, particularly near redox boundaries where redox conditions change rapidly in time and space. Here we examine the reactivity of a ferrihydrite-rich sediment from a surface seep adjacent to a redox boundary at the Rifle, Colorado field site. Iron(II)-sediment incubation experiments indicate that the natural ferrihydrite fraction of the sediment is not susceptible to reductive transformation under conditions that trigger significant mineralogical transformations of synthetic ferrihydrite. No measurable Fe(II)-promoted transformation was observed when the Rifle sediment was exposed to 30 mM Fe(II) for up to 2 weeks. Incubation of the Rifle sediment with 3 mM Fe(II) and 0.2 mM U(VI) for 15 days shows no measurable incorporation of U(VI) into the mineral structure or reduction of U(VI) to U(IV). Results indicate a significantly decreased reactivity of naturally occurring Fe oxyhydroxides as compared to synthetic minerals, likely due to the association of impurities (e.g., Si, organic matter), with implications for the mobility and bioavailability of uranium and other associated species in field environments.


Assuntos
Compostos Férricos/química , Ferro/química , Urânio/química , Adsorção , Colorado , Sedimentos Geológicos/química , Oxirredução , Espectroscopia por Absorção de Raios X , Difração de Raios X
2.
Environ Sci Technol ; 47(1): 364-71, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23163577

RESUMO

Microbially mediated reduction of soluble U(VI) to U(IV) with subsequent precipitation of uraninite, UO(2(S)), has been proposed as a method for limiting uranium (U) migration. However, microbially reduced UO(2) may be susceptible to reoxidation by environmental factors, with Fe(III) (hydr)oxides playing a significant role. Little is known about the role that organic compounds such as Fe(III) chelators play in the stability of reduced U. Here, we investigate the impact of citrate, DFB, EDTA, and NTA on biogenic UO(2) reoxidation with ferrihydrite, goethite, and hematite. Experiments were conducted in anaerobic batch systems in PIPES buffer (10 mM, pH 7) with bicarbonate for approximately 80 days. Results showed EDTA accelerated UO(2) reoxidation the most at an initial rate of 9.5 µM day(-1) with ferrihydrite, 8.6 µM day(-1) with goethite, and 8.8 µM day(-1) with hematite. NTA accelerated UO(2) reoxidation with ferrihydrite at a rate of 4.8 µM day(-1); rates were less with goethite and hematite (0.66 and 0.71 µM day(-1), respectively). Citrate increased UO(2) reoxidation with ferrihydrite at a rate of 1.8 µM day(-1), but did not increase the extent of reaction with goethite or hematite, with no reoxidation in this case. In all cases, bicarbonate increased the rate and extent of UO(2) reoxidation with ferrihydrite in the presence and absence of chelators. The highest rate of UO(2) reoxidation occurred when the chelator promoted both UO(2) and Fe(III) (hydr)oxide dissolution as demonstrated with EDTA. When UO(2) dissolution did not occur, UO(2) reoxidation likely proceeded through an aqueous Fe(III) intermediate with lower reoxidation rates observed. Reaction modeling suggests that strong Fe(II) chelators promote reoxidation whereas strong Fe(III) chelators impede it. These results indicate that chelators found in U contaminated sites may play a significant role in mobilizing U, potentially affecting bioremediation efforts.


Assuntos
Quelantes/química , Compostos Férricos/química , Urânio/química , Cloretos/metabolismo , Desferroxamina/química , Ácido Edético/química , Ácido Nitrilotriacético/química , Oxirredução , Shewanella putrefaciens/metabolismo , Urânio/metabolismo
3.
Biotechnol Bioeng ; 109(4): 877-83, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22095467

RESUMO

The conversion of soluble uranyl ions (UO2²âº) by bacterial reduction to sparingly soluble uraninite (UO2(s)) is being studied as a way of immobilizing subsurface uranium contamination. Under anaerobic conditions, several known types of bacteria including iron and sulfate reducing bacteria have been shown to reduce U (VI) to U (IV). Experiments using a suspension of uraninite (UO2(s)) particles produced by Shewanella putrefaciens CN32 bacteria show a dependence of both longitudinal (T1) and transverse (T2) magnetic resonance (MR) relaxation times on the oxidation state and solubility of the uranium. Gradient echo and spin echo MR images were compared to quantify the effect caused by the magnetic field fluctuations (T*2) of the uraninite particles and soluble uranyl ions. Since the precipitate studied was suspended in liquid water, the effects of concentration and particle aggregation were explored. A suspension of uraninite particles was injected into a polysaccharide gel, which simulates the precipitation environment of uraninite in the extracellular biofilm matrix. A reduction in the T2 of the gel surrounding the particles was observed. Tests done in situ using three bioreactors under different mixing conditions, continuously stirred, intermittently stirred, and not stirred, showed a quantifiable T2 magnetic relaxation effect over the extent of the reaction.


Assuntos
Biodegradação Ambiental , Espectroscopia de Ressonância Magnética/métodos , Shewanella putrefaciens/metabolismo , Poluentes Radioativos do Solo/metabolismo , Compostos de Urânio/análise , Urânio/metabolismo , Anaerobiose , Biofilmes , Reatores Biológicos , Cátions , Precipitação Química , Coloides , Hidrogéis , Nanopartículas Metálicas , Concentração Osmolar , Oxirredução , Solubilidade , Suspensões
4.
J Environ Qual ; 40(1): 90-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21488497

RESUMO

Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates whether it will reside in the aqueous or solid phase and thus plays an integral role in the mobility of uranium within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO2(2+) and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO. However, various factors within soils and sediments, such as U(VI) speciation and the presence of competitive electron acceptors, may limit biological reduction of U(VI). Here we examine simultaneous dissimilatory reduction of Fe(III) and U(VI) in batch systems containing dissolved uranyl acetate and ferrihydrite-coated sand. Varying amounts of calcium were added to induce changes in aqueous U(VI) speciation. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% in absence of Ca or ferrihydrite, but only 24% (with ferrihydrite) and 14% (without ferrihydrite) were removed for systems with 0.8 mM Ca. Dissimilatory reduction of Fe(III) and U(VI) proceed through different enzyme pathways within one type of organism. We quantified the rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concecentration (0-0.8 mM). The mathematical construct, implemented with the reactive transport code MIN3P, reveals predominant factors controlling rates and extent of uranium reduction in complex geochemical systems.


Assuntos
Biodegradação Ambiental , Ferro/química , Shewanella putrefaciens/metabolismo , Microbiologia do Solo , Poluentes do Solo/química , Urânio/química , Simulação por Computador , Modelos Biológicos , Oxirredução
5.
Environ Sci Technol ; 44(3): 928-34, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20058915

RESUMO

Adsorption on soil and sediment solids may decrease aqueous uranium concentrations and limit its propensity for migration in natural and contaminated settings. Uranium adsorption will be controlled in large part by its aqueous speciation, with a particular dependence on the presence of dissolved calcium and carbonate. Here we quantify the impact of uranyl speciation on adsorption to both goethite and sediments from the Hanford Clastic Dike and Oak Ridge Melton Branch Ridgetop formations. Hanford sediments were preconditioned with sodium acetate and acetic acid to remove carbonate grains, and Ca and carbonate were reintroduced at defined levels to provide a range of aqueous uranyl species. U(VI) adsorption is directly linked to UO(2)(2+) speciation, with the extent of retention decreasing with formation of ternary uranyl-calcium-carbonato species. Adsorption isotherms under the conditions studied are linear, and K(d) values decrease from 48 to 17 L kg(-1) for goethite, from 64 to 29 L kg (-1) for Hanford sediments, and from 95 to 51 L kg(-1) for Melton Branch sediments as the Ca concentration increases from 0 to 1 mM at pH 7. Our observations reveal that, in carbonate-bearing waters, neutral to slightly acidic pH values ( approximately 5) and limited dissolved calcium are optimal for uranium adsorption.


Assuntos
Carbonato de Cálcio/química , Sedimentos Geológicos/química , Compostos de Urânio/química , Poluentes Radioativos da Água/química , Adsorção , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Dióxido de Silício/química
6.
Environ Sci Technol ; 43(19): 7391-6, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19848151

RESUMO

The form of solid phase U after Fe(II) induced anaerobic remineralization of ferrihydrite in the presence of aqueous and absorbed U(VI) was investigated under both abiotic batch and biotic flow conditions. Experiments were conducted with synthetic ground waters containing 0.168 mM U(VI), 3.8 mM carbonate, and 3.0 mM Ca2+. In spite of the high solubility of U(VI) under these conditions, appreciable removal of U(VI) from solution was observed in both the abiotic and biotic systems. The majority of the removed U was determined to be substituted as oxidized U (U(VI) or U(V)) into the octahedral position of the goethite and magnetite formed during ferrihydrite remineralization. It is estimated that between 3 and 6% of octahedral Fe(III) centers in the new Fe minerals were occupied by U. This site specific substitution is distinct from the nonspecific U coprecipitation processes in which uranyl compounds, e.g., uranyl hydroxide or carbonate, are entrapped within newly formed Fe oxides. The prevalence of site specific U incorporation under both abiotic and biotic conditions and the fact that the produced solids were shown to be resistant to both extraction (30 mM KHCO3) and oxidation (air for 5 days) suggest the potential importance of sequestration in Fe oxides as a stable and immobile form of U in the environment.


Assuntos
Poluentes Ambientais/química , Compostos Férricos/química , Urânio/química , Catálise , Oxirredução , Compostos de Urânio/química
7.
Environ Sci Technol ; 43(13): 4922-7, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19673286

RESUMO

Reaction pathways resulting in uranium-bearing solids that are stable (i.e., having limited solubility) under aerobic and anaerobic conditions will limit dissolved concentrations and migration of this toxin. Here, we examine the sorption mechanism and propensity for release of uranium reacted with Fe (hydr)oxides under cyclic oxidizing and reducing conditions. Upon reaction of ferrihydrite with Fe(II) under conditions where aqueous Ca-UO2-CO3 species predominate (3 mM Ca and 3.8 mM total CO3), dissolved uranium concentrations decrease from 0.16 mM to below detection limit (BDL) after 5-15 d, depending on the Fe(II) concentration. In systems undergoing 3 successive redox cycles (14 d of reduction, followed by 5 d of oxidation) and a pulsed decrease to 0.15 mM total CO3, dissolved uranium concentrations varied depending on the Fe(II) concentration during the initial and subsequent reduction phases. U concentrations resulting during the oxic "rebound" varied inversely with the Fe(II) concentration during the reduction cycle. Uranium removed from solution remains in the oxidized form and is found adsorbed onto and incorporated into the structure of newly formed goethite and magnetite. Our results reveal that the fate of uranium is dependent on anaerobic/ aerobic conditions, aqueous uranium speciation, and the fate of iron.


Assuntos
Monitoramento Ambiental/métodos , Compostos Férricos/análise , Oxirredução , Urânio/análise , Exposição Ambiental , Poluentes Ambientais/análise , Óxido Ferroso-Férrico/química , Ferro/química , Compostos de Ferro/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Minerais , Urânio/química , Compostos de Urânio/análise
8.
Environ Sci Technol ; 41(21): 7343-8, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18044509

RESUMO

Transport of uranium within surface and subsurface environments is predicated largely on its redox state. Uranyl reduction may transpire through either biotic (enzymatic) or abiotic pathways; in either case, reduction of U(VI) to U(IV) results in the formation of sparingly soluble UO2 precipitates. Biological reduction of U(VI), while demonstrated as prolific under both laboratory and field conditions, is influenced by competing electron acceptors (such as nitrate, manganese oxides, or iron oxides) and uranyl speciation. Formation of Ca-UO2-CO3 ternary complexes, often the predominate uranyl species in carbonate-bearing soils and sediments, decreases the rate of dissimilatory U(VI) reduction. The combined influence of uranyl speciation within a mineralogical matrix comparable to natural environments and under hydrodynamic conditions, however, remains unresolved. We therefore examined uranyl reduction by Shewanella putrefaciens within packed mineral columns of ferrihydrite-coated quartz sand under conditions conducive or nonconducive to Ca-UO2-CO3 species formation. The results are dramatic. In the absence of Ca, where uranyl carbonato complexes dominate, U(VI) reduction transpires and consumes all of the U(VI) within the influent solution (0.166 mM) over the first 2.5 cm of the flow field for the entirety of the 54 d experiment. Over 2 g of U is deposited during this reaction period, and despite ferrihydrite being a competitive electron acceptor, uranium reduction appears unabated for the duration of our experiments. By contrast, in columns with 4 mM Ca in the influent solution (0.166 mM uranyl), reduction (enzymatic or surface-bound Fe(III) mediated) appears absent and breakthrough occurs within 18 d (at a flow rate of 3 pore volumes per day). Uranyl speciation, and in particular the formation of ternary Ca-UO2-CO3 complexes, has a profound impact on U(VI) reduction and thus transport within anaerobic systems.


Assuntos
Cálcio/química , Ferro/metabolismo , Shewanella putrefaciens/metabolismo , Urânio/química , Urânio/metabolismo , Poluentes Radioativos da Água/metabolismo , Ferro/química , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Oxirredução , Shewanella putrefaciens/efeitos dos fármacos , Dióxido de Silício , Poluentes Radioativos da Água/química
9.
J Environ Qual ; 36(2): 363-72, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17255623

RESUMO

Uranium is a redox active contaminant of concern to both human health and ecological preservation. In anaerobic soils and sediments, the more mobile, oxidized form of uranium (UO(2)(2+) and associated species) may be reduced by dissimilatory metal-reducing bacteria. Despite rapid reduction in controlled, experimental systems, various factors within soils or sediments may limit biological reduction of U(VI), inclusive of competing electron acceptors and alterations in uranyl speciation. Here we elucidate the impact of U(VI) speciation on the extent and rate of reduction, and we examine the impact of Fe(III) (hydr)oxides (ferrihydrite, goethite, and hematite) varying in free energies of formation. Observed pseudo first-order rate coefficients for U(VI) reduction vary from 12 +/- 0.60 x 10(-3) h(-1) (0 mM Ca in the presence of goethite) to 2.0 +/- 0.10 x 10(-3) h(-1) (0.8 mM Ca in the presence of hematite). Nevertheless, dissolved Ca (at concentrations from 0.2 to 0.8 mM) decreases the extent of U(VI) reduction by approximately 25% after 528 h relative to rates without Ca present. Imparting an important criterion on uranium reduction, goethite and hematite decrease the dissolved concentration of calcium through adsorption and thus tend to diminish the effect of calcium on uranium reduction. Ferrihydrite, in contrast, acts as a competitive electron acceptor and thus, like Ca, decreases uranium reduction. However, while ferrihydrite decreases U(VI) in solutions without Ca, with increasing Ca concentrations U(VI) reduction is enhanced in the presence of ferrihydrite (relative to its absence)-U(VI) reduction, in fact, becomes almost independent of Ca concentration. The quantitative framework described herein helps to predict the fate and transport of uranium within anaerobic environments.


Assuntos
Cálcio/farmacologia , Compostos Férricos/farmacologia , Compostos de Ferro/farmacologia , Shewanella putrefaciens/efeitos dos fármacos , Urânio/metabolismo , Cálcio/química , Poluentes Ambientais/metabolismo , Compostos Férricos/química , Compostos de Ferro/química , Minerais , Oxirredução , Shewanella putrefaciens/metabolismo , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...