Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 6(9): 1262-1270, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798839

RESUMO

The biodiversity of marine and coastal habitats is experiencing unprecedented change. While there are well-known drivers of these changes, such as overexploitation, climate change and pollution, there are also relatively unknown emerging issues that are poorly understood or recognized that have potentially positive or negative impacts on marine and coastal ecosystems. In this inaugural Marine and Coastal Horizon Scan, we brought together 30 scientists, policymakers and practitioners with transdisciplinary expertise in marine and coastal systems to identify new issues that are likely to have a significant impact on the functioning and conservation of marine and coastal biodiversity over the next 5-10 years. Based on a modified Delphi voting process, the final 15 issues presented were distilled from a list of 75 submitted by participants at the start of the process. These issues are grouped into three categories: ecosystem impacts, for example the impact of wildfires and the effect of poleward migration on equatorial biodiversity; resource exploitation, including an increase in the trade of fish swim bladders and increased exploitation of marine collagens; and new technologies, such as soft robotics and new biodegradable products. Our early identification of these issues and their potential impacts on marine and coastal biodiversity will support scientists, conservationists, resource managers and policymakers to address the challenges facing marine ecosystems.


Assuntos
Biodiversidade , Ecossistema , Animais , Mudança Climática , Humanos
2.
Mar Environ Res ; 175: 105587, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35196583

RESUMO

Coral reefs across the world face significant threats from fishing and climate change, which tends to be most acute in shallower waters. This is the case off Pemba Island, Tanzania, yet the effects of these anthropogenic stressors on the distribution and abundance of economically and ecologically important predatory reef fish, including how they vary with depth and habitat type, is poorly understood. Thus, we deployed 79 baited remote underwater videos (BRUVs) in variable water depths and habitats off Pemba Island, and modeled the effects of depth and habitat on abundance of predatory reef fish. Predatory reef fish types/taxa were significantly predicted by depth and habitat types. Habitats in relatively deeper waters and dominated by hard and soft corals hosted high species richness and abundance of predatory reef fish types/taxa compared to mixed sandy and rubble habitats. The findings add to the growing evidence that deep waters around coral reefs are important habitats for predatory reef fish. Thus, careful management, through effective area and species protection measures, is needed to prevent further depletion of predatory reef-associated fish populations and to conserve this biologically important area.


Assuntos
Antozoários , Ecossistema , Animais , Recifes de Corais , Peixes , Tanzânia , Água
3.
Mar Pollut Bull ; 173(Pt A): 113010, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34628347

RESUMO

Understanding how Marine Protected Areas (MPAs) improve conservation outcomes across anthropogenic pressures can improve the benefits derived from them. Effects of protection for coral reefs in the western and central Indian Ocean were assessed using size-spectra analysis of fish and the relationships of trophic group biomass with human population density. Length-spectra relationships quantifying the relative abundance of small and large fish (slope) and overall productivity of the system (intercept) showed inconsistent patterns with MPA protection. The results suggest that both the slopes and intercepts were significantly higher in highly and well-protected MPAs. This indicates that effective MPAs are more productive and support higher abundances of smaller fish, relative to moderately protected MPAs. Trophic group biomass spanning piscivores and herbivores, decreased with increasing human density implying restoration of fish functional structure is needed. This would require addressing fisher needs and supporting effective MPA management to secure ecosystem benefits for coastal communities.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Efeitos Antropogênicos , Biomassa , Recifes de Corais , Pesqueiros , Peixes , Humanos
4.
Sci Total Environ ; 755(Pt 1): 143019, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33160677

RESUMO

Marine bivalve molluscs, such as scallops, mussels and oysters, are crucial components of coastal ecosystems, providing a range of ecosystem services, including a quarter of the world's seafood. Unfortunately, coastal marine areas often suffer from high levels of metals due to dumping and disturbance of contaminated material. We established that increased levels of metal pollution (zinc, copper and lead) in sediments near the Isle of Man, resulting from historical mining, strongly correlated with significant weakening of shell strength in king scallops, Pecten maximus. This weakness increased mortality during fishing and left individuals more exposed to predation. Comparative structural analysis revealed that shells from the contaminated area were thinner and exhibited a pronounced mineralisation disruption parallel to the shell surface within the foliated region of both the top and bottom valves. Our data suggest that these disruptions caused reduced fracture strength and hence increased mortality, even at subcritical contamination levels with respect to current international standards. This hitherto unreported effect is important since such non-apical responses rarely feed into environmental quality assessments, despite potentially significant implications for the survival of organisms exposed to contaminants. Hence our findings highlight the impact of metal pollution on shell mineralisation in bivalves and urge a reappraisal of currently accepted critical contamination levels.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Humanos , Metais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
PeerJ ; 6: e4904, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900072

RESUMO

BACKGROUND: The whale shark (Rhincodon typus) is known to aggregate in a number of coastal locations globally, however what causes these aggregations to form where they do is largely unknown. This study examines whether bathymetry is an important driver of coastal aggregation locations for R. typus through bathymetry's effect on primary productivity and prey availability. This is a global study taking into account all coastal areas within R. typus' range. METHODS: R. typus aggregation locations were identified through an extensive literature review. Global bathymetric data were compared at R. typus aggregation locations and a large random selection of non-aggregation areas. Generalised linear models were used to assess which bathymetric characteristic had the biggest influence on aggregation presence. RESULTS: Aggregation sites were significantly shallower than non-aggregation sites and in closer proximity to deep water (the mesopelagic zone) by two orders of magnitude. Slope at aggregation sites was significantly steeper than non-aggregation sites. These three bathymetric variables were shown to have the biggest association with aggregation sites, with up to 88% of deviation explained by the GLMs. DISCUSSION: The three key bathymetric characteristics similar at the aggregation sites are known to induce upwelling events, increase primary productivity and consequently attract numerous other filter feeding species. The location of aggregation sites in these key areas can be attributed to this increased prey availability, thought to be the main reason R. typus aggregations occur, extensively outlined in the literature. The proximity of aggregations to shallow areas such as reefs could also be an important factor why whale sharks thermoregulate after deep dives to feed. These findings increase our understanding of whale shark behaviour and may help guide the identification and conservation of further aggregation sites.

6.
Mar Environ Res ; 107: 8-23, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25863362

RESUMO

Despite recent efforts to increase the global coverage of marine protected areas (MPAs), studies investigating the effectiveness of marine protected areas within temperate waters remain scarce. Furthermore, out of the few studies published on MPAs in temperate waters, the majority focus on specific ecological or fishery components rather than investigating the ecosystem as a whole. This study therefore investigated the dynamics of both benthic communities and fish populations within a recently established, fully protected marine reserve in Lamlash Bay, Isle of Arran, United Kingdom, over a four year period. A combination of photo and diver surveys revealed live maerl (Phymatolithon calcareum), macroalgae, sponges, hydroids, feather stars and eyelash worms (Myxicola infundibulum) to be significantly more abundant within the marine reserve than on surrounding fishing grounds. Likewise, the overall composition of epifaunal communities in and outside the reserve was significantly different. Both results are consistent with the hypothesis that protecting areas from fishing can encourage seafloor habitats to recover. In addition, the greater abundance of complex habitats within the reserve appeared to providing nursery habitat for juvenile cod (Gadus morhua) and scallops (Pecten maximus and Aequipecten opercularis). In contrast, there was little difference in the abundance of mobile benthic fauna, such as crabs and starfish, between the reserve and outside. Similarly, the use of baited underwater video cameras revealed no difference in the abundance and size of fish between the reserve and outside. Limited recovery of these ecosystem components may be due to the relatively small size (2.67 km(2)) and young age of the reserve (<5 years), both of which might have limited the extent of any benefits afforded to mobile fauna and fish communities. Overall, this study provides evidence that fully protected marine reserves can encourage seafloor habitats to recover, which in turn, can create a number of benefits that flow back to other species, including those of commercial importance.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Análise de Variância , Animais , Biodiversidade , Peixes/fisiologia , Invertebrados/fisiologia , Dinâmica Populacional , Fatores de Tempo , Reino Unido , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...