Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 931: 172507, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38657818

RESUMO

Dumped Chromium Ore Processing Residue (COPR) at legacy sites poses a threat to health through leaching of toxic Cr(VI) into groundwater. Previous work implicates microbial activity in reducing Cr(VI) to less mobile and toxic Cr(III), but the mechanism has not been explored. To address this question a combined metagenomic and geochemical study was undertaken. Soil samples from below the COPR waste were used to establish anaerobic microcosms which were challenged with Cr(VI), with or without acetate as an electron donor, and incubated for 70 days. Cr was rapidly reduced in both systems, which also reduced nitrate, nitrite then sulfate, but this sequence was accelerated in the acetate amended microcosms. 16S rRNA gene sequencing revealed that the original soil sample was diverse but both microcosm systems became less diverse by the end of the experiment. A high proportion of 16S rRNA gene reads and metagenome-assembled genomes (MAGs) with high completeness could not be taxonomically classified, highlighting the distinctiveness of these alkaline Cr impacted systems. Examination of the coding capacity revealed widespread capability for metal tolerance and Fe uptake and storage, and both populations possessed metabolic capability to degrade a wide range of organic molecules. The relative abundance of genes for fatty acid degradation was 4× higher in the unamended compared to the acetate amended system, whereas the capacity for dissimilatory sulfate metabolism was 3× higher in the acetate amended system. We demonstrate that naturally occurring in situ bacterial populations have the metabolic capability to couple acetate oxidation to sequential reduction of electron acceptors which can reduce Cr(VI) to less mobile and toxic Cr(III), and that microbially produced sulfide may be important in reductive precipitation of chromate. This capability could be harnessed to create a Cr(VI) trap-zone beneath COPR tips without the need to disturb the waste.


Assuntos
Cromo , RNA Ribossômico 16S , Microbiologia do Solo , Cromo/metabolismo , Metagenoma , Oxirredução , Biodegradação Ambiental , Poluentes do Solo/metabolismo , Água Subterrânea/microbiologia , Água Subterrânea/química , Bactérias/metabolismo
2.
Environ Sci Pollut Res Int ; 30(28): 72978-72992, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37184786

RESUMO

Biosolids are applied to agricultural land as a soil conditioner and source of crop nutrients. However, there is concern that bacteria from biosolids may become established in soils, particularly if that soil becomes water-logged. This study examined the microbial community of arable soils cultivated with barley under different applications of biosolids (0, 24t/ha, 48t/ha) in laboratory mesocosms which simulated a 10-day flood. Nutrients (P and N) and organic matter in the soil increased with application rate, but plant growth was not affected by biosolid application. The biosolids contained 10× more genetic material than the soil, with much lower bacterial diversity, yet application did not significantly change the taxonomy of the soil microbiome, with minor changes related to increased nutrients and SOM. Anaerobic conditions developed rapidly during flooding, causing shifts in the native soil microbiome. Some bacterial taxa that were highly abundant in biosolids had slightly increased relative abundance in amended soils during the flood. After flooding, soil bacterial populations returned to their pre-flood profiles, implying that the native microbial community is resilient to transient changes. The short-term changes in the microbiome of biosolid-amended soils during flooding do not appear to increase the environmental risk posed by biosolid application.


Assuntos
Inundações , Solo , Biossólidos , Agricultura , Bactérias/genética
3.
J Hazard Mater ; 445: 129899, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36493643

RESUMO

The uptake by and distribution of Zn and Pb within a novel seed-based Miscanthus hybrid grown in contaminated soil was assessed. Results from juvenile plants in a pot-trial was compared with data for mature biomass of the same species harvested during a field-trial. Both Zn and Pb uptake by juvenile plants were observed to increase in proportion to the soil concentrations. Both Zn and Pb accumulation differed between leaf and stem structures, and both were different in the mature biomass compared with juvenile plants. Analysis of X-Ray Absorption Fine Structures (XAFS) revealed different Zn speciation in stems and leaves, and differences in Zn speciation with plant maturity. Sulfur ligands consistent with the presence of cysteine rich metallothioneins (MT) and phytochelatin (PC) complexes were the dominant Zn species in juvenile plant leaves, together with octahedral O/N species typified by Zn-malate. Sulfur ligands were also prevalent in stems from juvenile plants, but predominant O/N speciation shifted towards tetrahedral coordination. In contrast, tetrahedral Zn coordination with O/N species predominated in the mature biomass crop. The XAFS spectra for the mature biomass were consistent with Zn being retained within cell walls as pectin and/or phosphate complexes.


Assuntos
Metais Pesados , Poluentes do Solo , Chumbo/análise , Ligantes , Poluentes do Solo/análise , Poaceae/química , Plantas , Solo/química , Zinco/análise , Enxofre , Metais Pesados/análise
4.
Environ Sci Pollut Res Int ; 26(5): 4717-4729, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30565111

RESUMO

Hexavalent chromium contamination of groundwater is a worldwide problem caused by anthropogenic and natural processes. We report the rate of Cr(VI) removal by two humic acids (extracted from Miocene age lignite and younger peat soil) in aqueous suspensions across a pH range likely to be encountered in terrestrial environments. Cr(VI) was reduced to Cr(III) in a first-order reaction with respect Cr(VI) concentration, but exhibited a partial order (~ 0.5) with respect to [H+]. This reaction was more rapid with the peat humic acid, where Cr(VI) reduction was observed at all pH values investigated (3.7 ≤ pH ≤ 10.5). 13C NMR and pyrolysis GC-MS spectroscopy indicate that the reaction results in loss of substituted phenolic moieties and hydroxyl groups from the humic acids. X-ray absorption spectroscopy indicated that at all pH values the resulting Cr(III) was associated with the partially degraded humic acid in an inner-sphere adsorption complex. The reaction mechanism is likely to be controlled by ester formation between Cr(VI) and phenolic/hydroxyl moieties, as this initial step is rapid in acidic systems but far less favourable in alkaline conditions. Our findings highlight the potential of humic acid to reduce and remove Cr(VI) from solution in a range of environmental conditions.


Assuntos
Cromo/química , Carvão Mineral , Substâncias Húmicas , Solo/química , Poluentes Químicos da Água/química , Adsorção , Cromo/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Água Subterrânea/química , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Oxirredução , Soluções , Poluentes Químicos da Água/isolamento & purificação , Espectroscopia por Absorção de Raios X
5.
Waste Manag ; 81: 1-10, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30527025

RESUMO

Steelmaking wastes stored in landfill, such as slag and spent refractory liners, are often enriched in toxic trace metals (including V). These may become mobile in highly alkaline leachate generated during weathering. Fresh steelmaking waste was characterised using XRD, XRF, and SEM-EDX. Batch leaching tests were performed under aerated, air-excluded and acidified conditions to determine the impact of atmospheric CO2 and acid addition on leachate chemistry. Phases commonly associated with slag including dicalcium silicate, dicalcium aluminoferrite, a wüstite-like solid solution and free lime were identified, as well as a second group of phases including periclase, corundum and graphite which are representative of refractory liners. During air-excluded leaching, dissolution of free lime and dicalcium silicate results in a high pH, high Ca leachate in which the V concentration is low due to the constraint imposed by Ca3(VO4)2 solubility limits. Under aerated conditions, carbonation lowers the leachate pH and provides a sink for aqueous Ca, allowing higher concentrations of V to accumulate. Below pH 10, leachate is dominated by periclase dissolution and secondary phases including monohydrocalcite and dolomite are precipitated. Storage of waste under saturated conditions that exclude atmospheric CO2 would therefore provide the optimal environment to minimise V leaching during weathering.


Assuntos
Resíduos Industriais , Aço , Vanádio/química , Poluentes Químicos da Água/química
6.
Sci Total Environ ; 643: 1191-1199, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189535

RESUMO

Vanadium is a toxic metal present in alkaline leachates produced during the weathering of steel slags. Slag leaching can therefore have deleterious effects on local watercourses due to metal toxicity, the effects of the high pH (9-12.5) and rapid carbonation (leading to smothering of benthic communities). We studied the fate and behaviour of V in slag leachate both through field observations of a heavily affected stream (Howden Burn, Consett UK) and in controlled laboratory experiments where slag leachates were neutralised by CO2 ingassing from air. V was found to be removed from leachates downstream from the Howden Burn source contemporaneously with a fall in pH, Ca, Al and Fe concentrations. In the neutralisation experiments pH reduced from 12 → 8, and limited quantities of V were incorporated into precipitated CaCO3. The presence of kaolinite clay (i.e. SiOH and AlOH surfaces) during neutralisation experiments had no measureable effect on V uptake in the alkaline to circumneutral pH range. XANES analysis showed that V was present in precipitates recovered from experiments as adsorbed or incorporated V(V) indicating its likely presence in leachates as the vanadate oxyanion (HVO42-). Nano-scale particles of 2-line ferrihydrite also formed in the neutralised leachates potentially providing an additional sorption surface for V uptake. Indeed, removal of V from leachates was significantly enhanced by the addition of goethite (i.e. FeOOH surfaces) to experiments. EXAFS analysis of recovered goethite samples showed HVO42- was adsorbed by the formation of strong inner-sphere complexes, facilitating V removal from solution at pH < 10. Results show that carbonate formation leads to V removal from leachates during leachate neutralisation, and the presence of both naturally occurring and neoformed Fe (oxy)hydroxides provide a potent sink for V in slag leachates, preventing the spread of V in the environment.

7.
J Environ Radioact ; 192: 279-288, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29990775

RESUMO

Short chain carbon-14 (14C) containing organic compounds can be formed by abiotic oxidation of carbides and impurities within nuclear fuel cladding. During fuel reprocessing and subsequent waste storage there is potential for these organic compounds to enter shallow subsurface environments due to accidental discharges. Currently there is little data on the persistence of these compounds in such environments. Four 14C-labelled compounds (acetate; formate; formaldehyde and methanol) were added to aerobic microcosm experiments that contained glacial outwash sediments and groundwater simulant representative of the Sellafield nuclear reprocessing site, UK. Two concentrations of each electron donor were used, low concentration (10-5 M) to replicate predicted concentrations from an accidental release and high concentration (10-2 M) to study the impact of the individual electron donor on the indigenous microbial community in the sediment. In the low concentration system only ∼5% of initial 14C remained in solution at the end of experiments in contact with atmosphere (250-350 h). The production of 14CO2(g) (measured after 48 h) suggests microbially mediated breakdown is the primary removal mechanism for these organic compounds, although methanol loss may have been partially by volatilisation. Highest retention of 14C by the solid fractions was found in the acetate experiment, with 12% being associated with the inorganic fraction, suggesting modest precipitation as solid carbonate. In the high concentration systems only ∼5% of initial 14C remains in solution at the end of the experiments for acetate, formate and methanol. In the formaldehyde experiment only limited loss from solution was observed (76% remained in solution). The microbial populations of unaltered sediment and those in the low concentration experiments were broadly similar, with highly diverse bacterial phyla present. Under high concentrations of the organic compounds the abundance of common operational taxonomic units was reduced by 66% and the community structure was dominated by Proteobacteria (particularly Betaproteobacteria) signifying a shift in community structure in response to the electron donor available. The results of this study suggest that many bacterial phyla that are ubiquitous in near surface soils are able to utilise a range of 14C-containing low molecular weight organic substances very rapidly, and thus such substances are unlikely to persist in aerobic shallow subsurface environments.


Assuntos
Radioisótopos de Carbono/análise , Água Subterrânea/química , Poluentes Radioativos da Água/análise , Aerobiose , Radioisótopos de Carbono/química , Peso Molecular , Microbiologia da Água , Poluentes Radioativos da Água/química
8.
Environ Sci Pollut Res Int ; 25(10): 9861-9872, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29372528

RESUMO

Alkalinity generation and toxic trace metal (such as vanadium) leaching from basic oxygen furnace (BOF) steel slag particles must be properly understood and managed by pre-conditioning if beneficial reuse of slag is to be maximised. Water leaching under aerated conditions was investigated using fresh BOF slag at three different particle sizes (0.5-1.0, 2-5 and 10 × 10 × 20 mm blocks) and a 6-month pre-weathered block. There were several distinct leaching stages observed over time associated with different phases controlling the solution chemistry: (1) free-lime (CaO) dissolution (days 0-2); (2) dicalcium silicate (Ca2SiO4) dissolution (days 2-14) and (3) Ca-Si-H and CaCO3 formation and subsequent dissolution (days 14-73). Experiments with the smallest size fraction resulted in the highest Ca, Si and V concentrations, highlighting the role of surface area in controlling initial leaching. After ~2 weeks, the solution Ca/Si ratio (0.7-0.9) evolved to equal those found within a Ca-Si-H phase that replaced dicalcium silicate and free-lime phases in a 30- to 150-µm altered surface region. V release was a two-stage process; initially, V was released by dicalcium silicate dissolution, but V also isomorphically substituted for Si into the neo-formed Ca-Si-H in the alteration zone. Therefore, on longer timescales, the release of V to solution was primarily controlled by considerably slower Ca-Si-H dissolution rates, which decreased the rate of V release by an order of magnitude. Overall, the results indicate that the BOF slag leaching mechanism evolves from a situation initially dominated by rapid hydration and dissolution of primary dicalcium silicate/free-lime phases, to a slow diffusion limited process controlled by the solubility of secondary Ca-Si-H and CaCO3 phases that replace and cover more reactive primary slag phases at particle surfaces.


Assuntos
Compostos de Cálcio/química , Poluentes Ambientais/análise , Resíduos Industriais/análise , Metalurgia , Silicatos/química , Aço , Vanádio/análise , Difusão , Oxigênio/química , Solubilidade , Propriedades de Superfície , Tempo (Meteorologia)
9.
Environ Sci Technol ; 52(1): 152-161, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29182867

RESUMO

Bauxite residue is a high volume byproduct of alumina manufacture which is commonly disposed of in purpose-built bauxite residue disposal areas (BRDAs). Natural waters interacting with bauxite residue are characteristically highly alkaline, and have elevated concentrations of Na, Al, and other trace metals. Rehabilitation of BRDAs is therefore often costly and resource/infrastructure intensive. Data is presented from three neighboring plots of bauxite residue that was deposited 20 years ago. One plot was amended 16 years ago with process sand, organic matter, gypsum, and seeded (fully treated), another plot was amended 16 years ago with process sand, organic matter, and seeded (partially treated), and a third plot was left untreated. These surface treatments lower alkalinity and salinity, and thus produce a substrate more suitable for biological colonisation from seeding. The reduction of pH leads to much lower Al, V, and As mobility in the actively treated residue and the beneficial effects of treatment extend passively 20-30 cm below the depth of the original amendment. These positive rehabilitation effects are maintained after 2 decades due to the presence of an active and resilient biological community. This treatment may provide a lower cost solution to BRDA end of use closure plans and orphaned BRDA rehabilitation.


Assuntos
Óxido de Alumínio , Sulfato de Cálcio , Salinidade , Dióxido de Silício , Solo
10.
Sci Total Environ ; 601-602: 1271-1279, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28605845

RESUMO

The management of alkaline (pH11-12.5) leachate is an important issue associated with the conditioning, afteruse or disposal of steel slags. Passive in-gassing of atmospheric CO2 is a low cost option for reducing Ca(OH)2 alkalinity, as Ca(OH)2 is neutralised by carbonic acid to produce CaCO3. The relative effectiveness of such treatment can be affected by both the system geometry (i.e. stepped cascades versus settlement ponds) and biological colonization. Sterilized mesocosm experiments run over periods of 20days showed that, due to more water mixing and enhanced CO2 dissolution at the weirs, the cascade systems (pH11.2→9.6) are more effective than settlement ponds (pH11.2→11.0) for lowering leachate alkalinity in all the tested conditions. The presence of an active microbial biofilm resulted in significantly more pH reduction in ponds (pH11.2→9.5), but had a small impact on the cascade systems (pH11.2→9.4). The pH variation in biofilm colonized systems shows a diurnal cycle of 1 to 1.5pH units due to CO2 uptake and release associated with respiration and photosynthesis. The results demonstrate that, where gradient permits, aeration via stepped cascades are the best option for neutralisation of steel slag leachates, and where feasible, the development of biofilm communities can also help reduce alkalinity.


Assuntos
Gerenciamento de Resíduos/métodos , Poluentes Químicos da Água/química , Carbonato de Cálcio/química , Concentração de Íons de Hidrogênio , Hidrologia , Resíduos Industriais/análise , Aço , Poluentes Químicos da Água/análise
11.
Environ Sci Technol ; 51(14): 7823-7830, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28627883

RESUMO

Basic oxygen furnace (BOF) steelmaking slag is enriched in potentially toxic V which may become mobilized in high pH leachate during weathering. BOF slag was weathered under aerated and air-excluded conditions for 6 months prior to SEM/EDS and µXANES analysis to determine V host phases and speciation in both primary and secondary phases. Leached blocks show development of an altered region in which free lime and dicalcium silicate phases were absent and Ca-Si-H was precipitated (CaCO3 was also present under aerated conditions). µXANES analyses show that V was released to solution as V(V) during dicalcium silicate dissolution and some V was incorporated into neo-formed Ca-Si-H. Higher V concentrations were observed in leachate under aerated conditions than in the air-excluded leaching experiment. Aqueous V concentrations were controlled by Ca3(VO4)2 solubility, which demonstrate an inverse relationship between Ca and V concentrations. Under air-excluded conditions Ca concentrations were controlled by dicalcium silicate dissolution and Ca-Si-H precipitation, leading to relatively high Ca and correspondingly low V concentrations. Formation of CaCO3 under aerated conditions provided a sink for aqueous Ca, allowing higher V concentrations limited by kinetic dissolution rates of dicalcium silicate. Thus, V release may be slowed by the precipitation of secondary phases in the altered region, improving the prospects for slag reuse.


Assuntos
Oxigênio , Aço , Vanádio , Resíduos Industriais , Espectroscopia por Absorção de Raios X
12.
Sci Total Environ ; 562: 335-343, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27104491

RESUMO

This study investigated the simultaneous removal of Sr(2+) and (14)CO3(2-) from pH>12 Ca(OH)2 solution by the precipitation of calcium carbonate. Initial Ca(2+):CO3(2-) ratios ranged from 10:1 to 10:100 (mM:mM). Maximum removal of (14)C and Sr(2+) both occurred in the system containing 10mM Ca(2+) and 1mM CO3(2-) (99.7% and 98.6% removal respectively). A kinetic model is provided that describes (14)C and Sr removal in terms of mineral dissolution and precipitation reactions. The removal of (14)C was achieved during the depletion of the initial TIC in solution, and was subsequently significantly affected by recrystallization of the calcite precipitate from an elongate to isotropic morphology. This liberated >46% of the (14)C back to solution. Sr(2+) removal occurred as Ca(2+) became depleted in solution and was not significantly affected by the recrystallization process. The proposed reaction could form the basis for low cost remediation scheme for (90)Sr and (14)C in radioactively contaminated waters (<$0.25 reagent cost per m(3) treated).


Assuntos
Radioisótopos de Carbono/química , Carbonatos/química , Modelos Químicos , Estrôncio/química , Precipitação Química , Cinética
13.
Sci Total Environ ; 541: 1191-1199, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26476060

RESUMO

Cr(VI) is an important contaminant found at sites where chromium ore processing residue (COPR) is deposited. No low cost treatment exists for Cr(VI) leaching from such sites. This study investigated the mechanism of interaction of alkaline Cr(VI)-containing leachate with an Fe(II)-containing organic matter rich soil beneath the waste. The soil currently contains 0.8% Cr, shown to be present as Cr(III)(OH)3 in EXAFS analysis. Lab tests confirmed that the reaction of Cr(VI) in site leachate with Fe(II) present in the soil was stoichiometrically correct for a reductive mechanism of Cr accumulation. However, the amount of Fe(II) present in the soil was insufficient to maintain long term Cr(VI) reduction at historic infiltration rates. The soil contains a population of bacteria dominated by a Mangroviflexus-like species, that is closely related to known fermentative bacteria, and a community capable of sustaining Fe(III) reduction in alkaline culture. It is therefore likely that in situ fermentative metabolism supported by organic matter in the soil produces more labile organic substrates (lactate was detected) that support microbial Fe(III) reduction. It is therefore suggested that addition of solid phase organic matter to soils adjacent to COPR may reduce the long term spread of Cr(VI) in the environment.


Assuntos
Cromo/análise , Compostos Férricos/química , Resíduos Industriais/análise , Poluentes do Solo/análise , Solo/química , Carbono/química , Cromo/química , Cromo/toxicidade , Eliminação de Resíduos , Poluentes do Solo/química , Poluentes do Solo/toxicidade
14.
Water Air Soil Pollut ; 226(6): 180, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25995525

RESUMO

A serial enrichment culture has been grown in an alkaline Fe(III)-citrate-containing medium from an initial inoculum from a soil layer beneath a chromium ore processing residue (COPR) disposal site where Cr(III) is accumulating from Cr(VI) containing leachate. This culture is dominated by two bacterial genera in the order Clostridiales, Tissierella, and an unnamed Clostridium XI subgroup. This paper investigates the growth characteristics of the culture when Cr(VI) is added to the growth medium and when aquifer sand is substituted for Fe(III)-citrate. The aim is to determine how the availability and chemical form of Fe(III) affects the growth of the bacterial consortium, to determine the impact of Cr(VI) on growth, and thus attempt to understand the factors that are controlling Cr(III) accumulation beneath the COPR site. The culture can grow fermentatively at pH 9.2, but growth is stronger when it is associated with Fe(III) reduction. It can withstand Cr(VI) in the medium, but growth only occurs once Cr(VI) is removed from solution. Cr(VI) reduced the abundance of Tissierella sp. in the culture, whereas the Clostridium XI sp. was Cr(VI) tolerant. In contrast, growth with solid phase Fe(III)-oxyhydroxides (present as coatings on aquifer sand) favoured the Tissierella C sp., possibly because it produces riboflavin as an extracellular electron shuttling compound allowing more efficient electron transfer to solid Fe(III) phases. Thus, it is suggested that bacterially mediated Cr(III) reduction in the soil beneath the COPR site is dependent on Fe(III) reduction to sustain the bacterial community.

15.
Environ Sci Pollut Res Int ; 22(14): 10800-10, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25761992

RESUMO

Red mud is a highly alkaline (pH >12) waste product from bauxite ore processing. The red mud spill at Ajka, Hungary, in 2010 released 1 million m(3) of caustic red mud into the surrounding area with devastating results. Aerobic and anaerobic batch experiments and solid phase extraction techniques were used to assess the impact of red mud addition on the mobility of Cu and Ni in soils from near the Ajka spill site. Red mud addition increases aqueous dissolved organic carbon (DOC) concentrations due to soil alkalisation, and this led to increased mobility of Cu and Ni complexed to organic matter. With Ajka soils, more Cu was mobilised by contact with red mud than Ni, despite a higher overall Ni concentration in the solid phase. This is most probably because Cu has a higher affinity to form complexes with organic matter than Ni. In aerobic experiments, contact with the atmosphere reduced soil pH via carbonation reactions, and this reduced organic matter dissolution and thereby lowered Cu/Ni mobility. These data show that the mixing of red mud into organic rich soils is an area of concern, as there is a potential to mobilise Cu and Ni as organically bound complexes, via soil alkalisation. This could be especially problematic in locations where anaerobic conditions can prevail, such as wetland areas contaminated by the spill.


Assuntos
Óxido de Alumínio/química , Cobre/química , Níquel/química , Poluentes do Solo/química , Poluentes Químicos da Água/química , Óxido de Alumínio/análise , Cobre/análise , Desastres , Recuperação e Remediação Ambiental , Inundações , Água Subterrânea/química , Hungria , Concentração de Íons de Hidrogênio , Níquel/análise , Solo/química , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Áreas Alagadas
16.
Appl Environ Microbiol ; 80(1): 128-37, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24141133

RESUMO

The biochemical and molecular mechanisms used by alkaliphilic bacterial communities to reduce metals in the environment are currently unknown. We demonstrate that an alkaliphilic (pH > 9) consortium dominated by Tissierella, Clostridium, and Alkaliphilus spp. is capable of using iron (Fe(3+)) as a final electron acceptor under anaerobic conditions. Iron reduction is associated with the production of a freely diffusible species that, upon rudimentary purification and subsequent spectroscopic, high-performance liquid chromatography, and electrochemical analysis, has been identified as a flavin species displaying properties indistinguishable from those of riboflavin. Due to the link between iron reduction and the onset of flavin production, it is likely that riboflavin has an import role in extracellular metal reduction by this alkaliphilic community.


Assuntos
Transporte de Elétrons , Compostos Férricos/metabolismo , Flavinas/metabolismo , Consórcios Microbianos , Cromatografia Líquida , Eletroquímica , Dados de Sequência Molecular , Oxirredução , Análise de Sequência de DNA , Análise Espectral
17.
Environ Geochem Health ; 35(5): 643-56, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23793510

RESUMO

Red mud is highly alkaline (pH 13), saline and can contain elevated concentrations of several potentially toxic elements (e.g. Al, As, Mo and V). Release of up to 1 million m(3) of bauxite residue (red mud) suspension from the Ajka repository, western Hungary, caused large-scale contamination of downstream rivers and floodplains. There is now concern about the potential leaching of toxic metal(loid)s from the red mud as some have enhanced solubility at high pH. This study investigated the impact of red mud addition to three different Hungarian soils with respect to trace element solubility and soil geochemistry. The effectiveness of gypsum amendment for the rehabilitation of red mud-contaminated soils was also examined. Red mud addition to soils caused a pH increase, proportional to red mud addition, of up to 4 pH units (e.g. pH 7 â†’ 11). Increasing red mud addition also led to significant increases in salinity, dissolved organic carbon and aqueous trace element concentrations. However, the response was highly soil specific and one of the soils tested buffered pH to around pH 8.5 even with the highest red mud loading tested (33 % w/w); experiments using this soil also had much lower aqueous Al, As and V concentrations. Gypsum addition to soil/red mud mixtures, even at relatively low concentrations (1 % w/w), was sufficient to buffer experimental pH to 7.5-8.5. This effect was attributed to the reaction of Ca(2+) supplied by the gypsum with OH(-) and carbonate from the red mud to precipitate calcite. The lowered pH enhanced trace element sorption and largely inhibited the release of Al, As and V. Mo concentrations, however, were largely unaffected by gypsum induced pH buffering due to the greater solubility of Mo (as molybdate) at circumneutral pH. Gypsum addition also leads to significantly higher porewater salinities, and column experiments demonstrated that this increase in total dissolved solids persisted even after 25 pore volume replacements. Gypsum addition could therefore provide a cheaper alternative to recovery (dig and dump) for the treatment of red mud-affected soils. The observed inhibition of trace metal release within red mud-affected soils was relatively insensitive to either the percentage of red mud or gypsum present, making the treatment easy to apply. However, there is risk that over-application of gypsum could lead to detrimental long-term increases in soil salinity.


Assuntos
Óxido de Alumínio/química , Sulfato de Cálcio/química , Poluição Ambiental/prevenção & controle , Poluentes do Solo/química , Alumínio/análise , Alumínio/química , Óxido de Alumínio/análise , Arsênio/análise , Arsênio/química , Monitoramento Ambiental , Poluição Ambiental/análise , Hungria , Concentração de Íons de Hidrogênio , Metais Pesados/análise , Metais Pesados/química , Salinidade , Poluentes do Solo/análise , Solubilidade , Espectrometria por Raios X , Difração de Raios X
18.
Environ Sci Technol ; 47(12): 6527-35, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23683000

RESUMO

Red mud leachate (pH 13) collected from Ajka, Hungary is neutralized to < pH 10 by HCl, gypsum, or seawater addition. During acid neutralization >99% Al is removed from solution during the formation of an amorphous boehmite-like precipitate and dawsonite. Minor amounts of As (24%) are also removed from solution via surface adsorption of As onto the Al oxyhydroxides. Gypsum addition to red mud leachate results in the precipitation of calcite, both in experiments and in field samples recovered from rivers treated with gypsum after the October 2010 red mud spill. Calcite precipitation results in 86% Al and 81% As removal from solution, and both are nonexchangeable with 0.1 mol L(-1) phosphate solution. Contrary to As associated with neoformed Al oxyhydroxides, EXAFS analysis of the calcite precipitates revealed only isolated arsenate tetrahedra with no evidence for surface adsorption or incorporation into the calcite structure, possibly as a result of very rapid As scavenging by the calcite precipitate. Seawater neutralization also resulted in carbonate precipitation, with >99% Al and 74% As removed from solution during the formation of a poorly ordered hydrotalcite phase and via surface adsorption to the neoformed precipitates, respectively. Half the bound As could be remobilized by phosphate addition, indicating that As was weakly bound, possibly in the hydrotalcite interlayer. Only 5-16% V was removed from solution during neutralization, demonstrating a lack of interaction with any of the neoformed precipitates. High V concentrations are therefore likely to be an intractable problem during the treatment of red mud leachates.


Assuntos
Alumínio/química , Arsênio/química , Sulfato de Cálcio/química , Ácido Clorídrico/química , Água do Mar/química , Vanádio/química
19.
Sensors (Basel) ; 13(1): 58-70, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23344373

RESUMO

The efficiency of three different biosensor flow cells is reported. All three flow cells featured a central channel that expands in the vicinity of the sensing element to provide the same diameter active region, but the rate of channel expansion and contraction varied between the designs. For each cell the rate at which the analyte concentration in the sensor chamber responds to a change in the influent analyte concentration was determined numerically using a finite element model and experimentally using a flow-fluorescence technique. Reduced flow cell efficiency with increasing flow rates was observed for all three designs and was related to the increased importance of diffusion relative to advection, with efficiency being limited by the development of regions of recirculating flow (eddies). However, the onset of eddy development occurred at higher flow rates for the design with the most gradual channel expansion, producing a considerably more efficient flow cell across the range of flow rates considered in this study. It is recommended that biosensor flow cells be designed to minimize the tendency towards, and be operated under conditions that prevent the development of flow recirculation.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Difusão , Eletrodos , Desenho de Equipamento , Análise de Elementos Finitos , Fluorescência , Técnicas Analíticas Microfluídicas/métodos , Modelos Teóricos , Polimetil Metacrilato/química , Politetrafluoretileno/química
20.
J Hazard Mater ; 194: 15-23, 2011 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-21871726

RESUMO

Highly alkaline (pH 12.2) chromate contaminated leachate (990 µmol L(-1)) has been entering soils below a chromite ore processing residue disposal (COPR) site for over 100 years. The soil immediately beneath the waste has a pH of 11→12.5, contains 0.3→0.5% (w/w) chromium, and 45→75% of the microbially available iron is Fe(II). Despite elevated pH, a viable microbial consortium of Firmicutes dominated iron reducers was isolated from this COPR affected soil. Soil pH and Cr concentration decrease with distance from the waste. XAS analysis of soil samples indicated that Cr is present as a mixed Cr(III)-Fe(III) oxy-hydroxide phase, suggesting that the elevated soil Cr content is due to reductive precipitation of Cr(VI) by Fe(II). Microcosm results demonstrate the capacity of COPR affected soil to abiotically remove all Cr(VI) from the leachate within 40 days. In air oxidation experiments less than 2% of the total Cr in the soil was remobilised despite significant Fe(II) oxidation. XAS analysis after air oxidation showed no change in Cr-speciation, indicating the Cr(III)-containing phase is a stable long term host for Cr. This work suggests that reductive precipitation of Cr(VI) is an effective method of contaminant immobilisation in soils where microbially produced Fe(II) is present.


Assuntos
Cromatos/química , Compostos Ferrosos/química , Solo/química , Bactérias/genética , Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução , Difração de Pó , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...