Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 82019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31386623

RESUMO

Cellular differentiation requires both activation of target cell transcriptional programs and repression of non-target cell programs. The Myt1 family of zinc finger transcription factors contributes to fibroblast to neuron reprogramming in vitro. Here, we show that ztf-11 (Zinc-finger Transcription Factor-11), the sole Caenorhabditis elegans Myt1 homolog, is required for neurogenesis in multiple neuronal lineages from previously differentiated epithelial cells, including a neuron generated by a developmental epithelial-to-neuronal transdifferentiation event. ztf-11 is exclusively expressed in all neuronal precursors with remarkable specificity at single-cell resolution. Loss of ztf-11 leads to upregulation of non-neuronal genes and reduced neurogenesis. Ectopic expression of ztf-11 in epidermal lineages is sufficient to produce additional neurons. ZTF-11 functions together with the MuvB corepressor complex to suppress the activation of non-neuronal genes in neurons. These results dovetail with the ability of Myt1l (Myt1-like) to drive neuronal transdifferentiation in vitro in vertebrate systems. Together, we identified an evolutionarily conserved mechanism to specify neuronal cell fate by repressing non-neuronal genes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Diferenciação Celular , Células Epiteliais/fisiologia , Regulação da Expressão Gênica , Neurônios/fisiologia , Transativadores/metabolismo , Animais , Fatores de Transcrição
2.
J Biol Chem ; 292(39): 16333-16350, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28821619

RESUMO

Sterol regulatory element-binding proteins (SREBPs) in the fission yeast Schizosaccharomyces pombe regulate lipid homeostasis and the hypoxic response under conditions of low sterol or oxygen availability. SREBPs are cleaved in the Golgi through the combined action of the Dsc E3 ligase complex, the rhomboid protease Rbd2, and the essential ATPases associated with diverse cellular activities (AAA+) ATPase Cdc48. The soluble SREBP N-terminal transcription factor domain is then released into the cytosol to enter the nucleus and regulate gene expression. Previously, we reported that Cdc48 binding to Rbd2 is required for Rbd2-mediated SREBP cleavage. Here, using affinity chromatography and mass spectrometry experiments, we identified Cdc48-binding proteins in S. pombe, generating a list of many previously unknown potential Cdc48-binding partners. We show that the established Cdc48 cofactor Ufd1 is required for SREBP cleavage but does not interact with the Cdc48-Rbd2 complex. Cdc48-Ufd1 is instead required at a step prior to Rbd2 function, during Golgi localization of the Dsc E3 ligase complex. Together, these findings demonstrate that two distinct Cdc48 complexes, Cdc48-Ufd1 and Cdc48-Rbd2, are required for SREBP activation and low-oxygen adaptation in S. pombe.


Assuntos
Adenosina Trifosfatases/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Deleção de Genes , Glicosilação , Complexo de Golgi/enzimologia , Imunoprecipitação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Proteína com Valosina
3.
J Biol Chem ; 292(13): 5311-5324, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28202541

RESUMO

The Mga2 and Sre1 transcription factors regulate oxygen-responsive lipid homeostasis in the fission yeast Schizosaccharomyces pombe in a manner analogous to the mammalian sterol regulatory element-binding protein (SREBP)-1 and SREBP-2 transcription factors. Mga2 and SREBP-1 regulate triacylglycerol and glycerophospholipid synthesis, whereas Sre1 and SREBP-2 regulate sterol synthesis. In mammals, a shared activation mechanism allows for coordinate regulation of SREBP-1 and SREBP-2. In contrast, distinct pathways activate fission yeast Mga2 and Sre1. Therefore, it is unclear whether and how these two related pathways are coordinated to maintain lipid balance in fission yeast. Previously, we showed that Sre1 cleavage is defective in the absence of mga2 Here, we report that this defect is due to deficient unsaturated fatty acid synthesis, resulting in aberrant membrane transport. This defect is recapitulated by treatment with the fatty acid synthase inhibitor cerulenin and is rescued by addition of exogenous unsaturated fatty acids. Furthermore, sterol synthesis inhibition blocks Mga2 pathway activation. Together, these data demonstrate that Sre1 and Mga2 are each regulated by the lipid product of the other transcription factor pathway, providing a source of coordination for these two branches of lipid synthesis.


Assuntos
Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/química , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Fatores de Transcrição/metabolismo , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/deficiência , Regulação Fúngica da Expressão Gênica , Metabolismo dos Lipídeos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Esteróis/biossíntese , Fatores de Transcrição/genética
4.
J Biol Chem ; 291(23): 12171-83, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27053105

RESUMO

Eukaryotic lipid synthesis is oxygen-dependent with cholesterol synthesis requiring 11 oxygen molecules and fatty acid desaturation requiring 1 oxygen molecule per double bond. Accordingly, organisms evaluate oxygen availability to control lipid homeostasis. The sterol regulatory element-binding protein (SREBP) transcription factors regulate lipid homeostasis. In mammals, SREBP-2 controls cholesterol biosynthesis, whereas SREBP-1 controls triacylglycerol and glycerophospholipid biosynthesis. In the fission yeast Schizosaccharomyces pombe, the SREBP-2 homolog Sre1 regulates sterol homeostasis in response to changing sterol and oxygen levels. However, notably missing is an SREBP-1 analog that regulates triacylglycerol and glycerophospholipid homeostasis in response to low oxygen. Consistent with this, studies have shown that the Sre1 transcription factor regulates only a fraction of all genes up-regulated under low oxygen. To identify new regulators of low oxygen adaptation, we screened the S. pombe nonessential haploid deletion collection and identified 27 gene deletions sensitive to both low oxygen and cobalt chloride, a hypoxia mimetic. One of these genes, mga2, is a putative transcriptional activator. In the absence of mga2, fission yeast exhibited growth defects under both normoxia and low oxygen conditions. Mga2 transcriptional targets were enriched for lipid metabolism genes, and mga2Δ cells showed disrupted triacylglycerol and glycerophospholipid homeostasis, most notably with an increase in fatty acid saturation. Indeed, addition of exogenous oleic acid to mga2Δ cells rescued the observed growth defects. Together, these results establish Mga2 as a transcriptional regulator of triacylglycerol and glycerophospholipid homeostasis in S. pombe, analogous to mammalian SREBP-1.


Assuntos
Metabolismo dos Lipídeos , Oxigênio/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transativadores/metabolismo , Anaerobiose , Animais , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Perfilação da Expressão Gênica/métodos , Regulação Fúngica da Expressão Gênica , Glicerofosfolipídeos/metabolismo , Homeostase , Mutação , Ácido Oleico/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Transativadores/genética , Triglicerídeos/metabolismo
5.
J Biol Chem ; 287(1): 672-681, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22086920

RESUMO

Schizosaccharomyces pombe Sre1 is a membrane-bound transcription factor that controls adaptation to hypoxia. Like its mammalian homolog, sterol regulatory element-binding protein (SREBP), Sre1 activation requires release from the membrane. However, in fission yeast, this release occurs through a strikingly different mechanism that requires the Golgi Dsc E3 ubiquitin ligase complex and the proteasome. The mechanistic details of Sre1 cleavage, including the link between the Dsc E3 ligase complex and proteasome, are not well understood. Here, we present results of a genetic selection designed to identify additional components required for Sre1 cleavage. From the selection, we identified two new components of the fission yeast SREBP pathway: Dsc5 and Cdc48. The AAA (ATPase associated with diverse cellular activities) ATPase Cdc48 and Dsc5, a ubiquitin regulatory X domain-containing protein, interact with known Dsc complex components and are required for SREBP cleavage. These findings provide a mechanistic link between the Dsc E3 ligase complex and the proteasome in SREBP cleavage and add to a growing list of similarities between the Dsc E3 ligase and membrane E3 ligases involved in endoplasmic reticulum-associated degradation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Membrana/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Ubiquitina-Proteína Ligases/química , Proteínas de Transporte/química , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/química , Mutagênese , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Proteólise , Schizosaccharomyces/citologia , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteína com Valosina
6.
Mol Cell ; 42(2): 160-71, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21504829

RESUMO

Mammalian lipid homeostasis requires proteolytic activation of membrane-bound sterol regulatory element binding protein (SREBP) transcription factors through sequential action of the Golgi Site-1 and Site-2 proteases. Here we report that while SREBP function is conserved in fungi, fission yeast employs a different mechanism for SREBP cleavage. Using genetics and biochemistry, we identified four genes defective for SREBP cleavage, dsc1-4, encoding components of a transmembrane Golgi E3 ligase complex with structural homology to the Hrd1 E3 ligase complex involved in endoplasmic reticulum-associated degradation. The Dsc complex binds SREBP and cleavage requires components of the ubiquitin-proteasome pathway: the E2-conjugating enzyme Ubc4, the Dsc1 RING E3 ligase, and the proteasome. dsc mutants display conserved aggravating genetic interactions with components of the multivesicular body pathway in fission yeast and budding yeast, which lacks SREBP. Together, these data suggest that the Golgi Dsc E3 ligase complex functions in a post-ER pathway for protein degradation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Complexo de Golgi/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ciclo Celular/genética , Endopeptidases/metabolismo , Complexos Multiproteicos , Pró-Proteína Convertases/metabolismo , Processamento de Proteína Pós-Traducional , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Serina Endopeptidases/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética
7.
EMBO J ; 28(2): 135-43, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19158663

RESUMO

Sre1, the fission yeast sterol regulatory element-binding protein, is an ER membrane-bound transcription factor that controls adaptation to low oxygen growth. Under low oxygen, Sre1 is proteolytically cleaved and the N-terminal transcription factor domain (Sre1N) is released from the membrane and enters the nucleus to activate hypoxic gene expression. Ofd1, a prolyl 4-hydroxylase-like 2-oxoglutarate dioxygenase, controls the oxygen-dependent stability of Sre1N. In the presence of oxygen, Ofd1 accelerates the degradation of Sre1N, but under low oxygen Ofd1 is inhibited and Sre1N accumulates. To identify the regulators of Sre1N, we performed a plasmid-based screen for genes that increased Sre1N transcriptional activity. Here, we identify Nro1 (SPCC4B3.07) as a positive regulator of Sre1N stability and a direct inhibitor of Ofd1. In the absence of oxygen, Nro1 binds to the Ofd1 C-terminal degradation domain and inhibits Sre1N degradation. In the presence of oxygen, Nro1 binding to Ofd1 is disrupted, leading to rapid degradation of Sre1N. We conclude that the Ofd1 dioxygenase domain functions as an oxygen sensor that regulates binding of Nro1 to Ofd1 to control oxygen-dependent Sre1N stability.


Assuntos
Proteínas de Transporte/metabolismo , Oxigênio/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Ativação Transcricional , Mutação , Ligação Proteica , Proteínas de Schizosaccharomyces pombe/genética
8.
J Lipid Res ; 49(9): 2001-12, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18503029

RESUMO

The endoplasmic reticulum membrane protein SREBP cleavage-activating protein (Scap) senses sterols and regulates activation of sterol-regulatory element binding proteins (SREBPs), membrane-bound transcription factors that control lipid homeostasis in fission yeast and mammals. Transmembrane segments 2-6 of Scap function as a sterol-sensing domain (SSD) that recognizes changes in cellular sterols and facilitates activation of SREBP. Previous studies identified conserved mutations Y298C, L315F, and D443N in the SSD of mammalian Scap and fission yeast Scap (Scp1) that render cells insensitive to sterols and cause constitutive SREBP activation. In this study, we utilized fission yeast genetics to identify additional functionally important residues in the SSD of Scp1 and Scap. Using a site-directed mutagenesis selection, we sampled all possible amino acid substitutions at 50 conserved residues in the SSD of Scp1 for their effects on yeast SREBP (Sre1) activation. We found mutations at 23 different amino acids in Scp1 that rendered Scp1 insensitive to sterols and caused constitutive activation of Sre1. To our surprise, the majority of the homologous Scap mutants displayed wild-type function, and only one mutation, V439G, caused constitutive activation of SREBP in mammals. These results suggest that the sterol-sensing mechanism of Scap and the functional requirements for SREBP activation are different between fission yeast and mammals.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Schizosaccharomyces/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Mutagênese Sítio-Dirigida , Mutação
9.
Mol Cell Biol ; 26(7): 2817-31, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16537923

RESUMO

Fission yeast sterol regulatory element binding protein (SREBP), called Sre1p, functions in an oxygen-sensing pathway to allow adaptation to fluctuating oxygen concentrations. The Sre1p-Scp1p complex responds to oxygen-dependent sterol synthesis as an indirect measure of oxygen availability. To examine the role of Sre1p in anaerobic gene expression in Schizosaccharomyces pombe, we performed transcriptional profiling experiments after a shift to anaerobic conditions for 1.5 h. Of the 4,940 genes analyzed, expression levels of 521 (10.5%) and 686 (13.9%) genes were significantly increased and decreased, respectively, under anaerobic conditions. Sre1p controlled 68% of genes induced > or = 2-fold. Oxygen-requiring biosynthetic pathways for ergosterol, heme, sphingolipid, and ubiquinone were primary targets of Sre1p. Induction of glycolytic genes and repression of mitochondrial oxidative phosphorylation genes largely did not require Sre1p. Using chromatin immunoprecipitation, we demonstrated that Sre1p acts directly at target gene promoters and stimulates its own transcription under anaerobic conditions. sre1+ promoter analysis identified two DNA elements that are both necessary and sufficient for oxygen-dependent, Sre1p-dependent transcription. Interestingly, these elements are homologous to sterol regulatory elements bound by mammalian SREBP, highlighting the evolutionary conservation between Sre1p and SREBP. We conclude that Sre1p is a principal activator of anaerobic gene expression, upregulating genes required for nonrespiratory oxygen consumption.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Anaerobiose , Regulação para Baixo/genética , Genes Fúngicos/genética , Oxigênio/metabolismo , Regiões Promotoras Genéticas/genética , Elementos Reguladores de Transcrição/genética , Schizosaccharomyces/crescimento & desenvolvimento , Fatores de Tempo , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...