Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31551750

RESUMO

Optogenetics is widely used in neuroscience to control neural circuits. However, non-invasive methods for light delivery in brain are needed to avoid physical damage caused by current methods. One potential strategy could employ x-ray activation of radioluminescent particles (RPLs), enabling localized light generation within the brain. RPLs composed of inorganic scintillators can emit light at various wavelengths depending upon composition. Cerium doped lutetium oxyorthosilicate (LSO:Ce), an inorganic scintillator that emits blue light in response to x-ray or ultraviolet (UV) stimulation, could potentially be used to control neural circuits through activation of channelrhodopsin-2 (ChR2), a light-gated cation channel. Whether inorganic scintillators themselves negatively impact neuronal processes and synaptic function is unknown, and was investigated here using cellular, molecular, and electrophysiological approaches. As proof of principle, we applied UV stimulation to 4 µm LSO:Ce particles during whole-cell recording of CA1 pyramidal cells in acute hippocampal slices from mice that expressed ChR2 in glutamatergic neurons. We observed an increase in frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs), indicating activation of ChR2 and excitation of neurons. Importantly, LSO:Ce particles did not affect survival of primary mouse cortical neurons, even after 24 h of exposure. In extracellular dendritic field potential recordings, no change in the strength of basal glutamatergic transmission was observed during exposure to LSO:Ce microparticles. However, the amplitude of the fiber volley was slightly reduced with high stimulation. Additionally, there was a slight decrease in the frequency of sEPSCs in whole-cell voltage-clamp recordings from CA1 pyramidal cells, with no change in current amplitudes. The amplitude and frequency of spontaneous inhibitory postsynaptic currents were unchanged. Finally, long term potentiation (LTP), a synaptic modification believed to underlie learning and memory and a robust measure of synaptic integrity, was successfully induced, although the magnitude was slightly reduced. Together, these results show LSO:Ce particles are biocompatible even though there are modest effects on baseline synaptic function and long-term synaptic plasticity. Importantly, we show that light emitted from LSO:Ce particles is able to activate ChR2 and modify synaptic function. Therefore, LSO:Ce inorganic scintillators are potentially viable for use as a new light delivery system for optogenetics.

2.
Front Neurosci ; 13: 745, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456654

RESUMO

Optical stimulation and imaging of neurons deep in the brain require implantable optical neural probes. External optical access to deeper regions of the brain is limited by scattering and absorption of light as it propagates through tissue. Implantable optoelectronic probes capable of high-resolution light delivery and high-density neural recording are needed for closed-loop manipulation of neural circuits. Micro-light-emitting diodes (µLEDs) have been used for optical stimulation, but predominantly on rigid silicon or sapphire substrates. Flexible polymer neural probes would be preferable for chronic applications since they cause less damage to brain tissue. Flexible µLED neural probes have been recently implemented by flip-chip bonding of commercially available µLED chips onto flexible substrates. Here, we demonstrate a monolithic design for flexible optoelectronic neural interfaces with embedded gallium nitride µLEDs that can be microfabricated at wafer-scale. Parylene C is used as the substrate and insulator due to its biocompatibility, compliance, and optical transparency. We demonstrate one-dimensional and two-dimensional individually-addressable µLED arrays. Our µLEDs have sizes as small as 22 × 22 µm in arrays of up to 32 µLEDs per probe shank. These devices emit blue light at a wavelength of 445 nm, suitable for stimulation of channelrhodopsin-2, with output powers greater than 200 µW at 2 mA. Our flexible optoelectronic probes are double-sided and can illuminate brain tissue from both sides. Recording electrodes are co-fabricated with µLEDs on the front- and backside of the optoelectronic probes for electrophysiology recording of neuronal activity from the volumes of tissue on the front- and backside simultaneously with bi-directional optical stimulation.

3.
Neurobiol Aging ; 81: 9-21, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31207469

RESUMO

The etiology of late-onset Alzheimer's disease is unknown. Recent epidemiological studies suggest that exposure to high levels of ozone (O3) may be a risk factor for late-onset Alzheimer's disease. Nonetheless, whether and how O3 exposure contributes to AD development remains to be determined. In this study, we tested the hypothesis that O3 exposure synergizes with the genetic risk factor APOE ε4 and aging leading to AD, using male apolipoprotein E (apoE)4 and apoE3 targeted replacement mice as men have increased risk exposure to high levels of O3 via working environments and few studies have addressed APOE ε4 effects on males. Surprisingly, our results show that O3 exposure impairs memory in old apoE3, but not old apoE4 or young apoE3 and apoE4, male mice. Further studies show that old apoE4 mice have increased hippocampal activities or expression of some enzymes involved in antioxidant defense, diminished protein oxidative modification, and neuroinflammation following O3 exposure compared with old apoE3 mice. These novel findings highlight the complexity of interactions between APOE genotype, age, and environmental exposure in AD development.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/genética , Apolipoproteína E3 , Exposição Ambiental/efeitos adversos , Transtornos da Memória/etiologia , Ozônio/efeitos adversos , Animais , Apolipoproteína E4 , Genótipo , Masculino , Estresse Oxidativo , Fatores de Risco
4.
Neuron ; 103(2): 277-291.e4, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31151774

RESUMO

Neocortical circuits are sensitive to experience, showing both anatomical and electrophysiological changes in response to altered sensory input. We examined input- and cell-type-specific changes in thalamo- and intracortical pathways during learning using an automated, home-cage sensory association training (SAT) paradigm coupling multi-whisker stimulation to a water reward. We found that the posterior medial nucleus (POm) but not the ventral posterior medial (VPM) nucleus of the thalamus drives increased cortical activity after 24 h of SAT, when behavioral evidence of learning first emerges. Synaptic strengthening within the POm thalamocortical pathway was first observed at thalamic inputs to L5 and was not generated by sensory stimulation alone. Synaptic changes in L2 were delayed relative to L5, requiring 48 h of SAT to drive synaptic plasticity at thalamic and intracortical inputs onto L2 Pyr neurons. These data identify the POm thalamocortical circuit as a site of rapid synaptic plasticity during learning and suggest a temporal sequence to learning-evoked synaptic changes in the sensory cortex.


Assuntos
Vias Aferentes/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Células Receptoras Sensoriais/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Animais , Macaca mulatta , Masculino , Modelos Neurológicos , Dinâmica não Linear , Amplitude de Movimento Articular/fisiologia , Vibrissas/inervação
5.
J Neurosci ; 37(34): 8207-8215, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28760863

RESUMO

O-GlcNAcylation is a ubiquitous and dynamic post-translational modification involving the O-linkage of ß-N-acetylglucosamine to serine/threonine residues of membrane, cytosolic, and nuclear proteins. This modification is similar to phosphorylation and regarded as a key regulator of cell survival and homeostasis. Previous studies have shown that phosphorylation of serine residues on synaptic proteins is a major regulator of synaptic strength and long-term plasticity, suggesting that O-GlcNAcylation of synaptic proteins is likely as important as phosphorylation; however, few studies have investigated its role in synaptic efficacy. We recently demonstrated that acutely increasing O-GlcNAcylation induces a novel form of LTD at CA3-CA1 synapses, O-GlcNAc LTD. Here, using hippocampal slices from young adult male rats and mice, we report that epileptiform activity at CA3-CA1 synapses, generated by GABAAR inhibition, is significantly attenuated when protein O-GlcNAcylation is pharmacologically increased. This dampening effect is lost in slices from GluA2 KO mice, indicating a requirement of GluA2-containing AMPARs, similar to expression of O-GlcNAc LTD. Furthermore, we find that increasing O-GlcNAcylation decreases spontaneous CA3 pyramidal cell activity under basal and hyperexcitable conditions. This dampening effect was also observed on cortical hyperexcitability during in vivo EEG recordings in awake mice where the effects of the proconvulsant pentylenetetrazole are attenuated by acutely increasing O-GlcNAcylation. Collectively, these data demonstrate that the post-translational modification, O-GlcNAcylation, is a novel mechanism by which neuronal and synaptic excitability can be regulated, and suggest the possibility that increasing O-GlcNAcylation could be a novel therapeutic target to treat seizure disorders and epilepsy.SIGNIFICANCE STATEMENT We recently reported that an acute pharmacological increase in protein O-GlcNAcylation induces a novel form of long-term synaptic depression at hippocampal CA3-CA1 synapses (O-GlcNAc LTD). This synaptic dampening effect on glutamatergic networks suggests that increasing O-GlcNAcylation will depress pathological hyperexcitability. Using in vitro and in vivo models of epileptiform activity, we show that acutely increasing O-GlcNAc levels can significantly attenuate ongoing epileptiform activity and prophylactically dampen subsequent seizure activity. Together, our findings support the conclusion that protein O-GlcNAcylation is a regulator of neuronal excitability, and it represents a promising target for further research on seizure disorder therapeutics.


Assuntos
Acetilglucosamina/metabolismo , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Depressão Sináptica de Longo Prazo/fisiologia , Animais , Epilepsia/prevenção & controle , Feminino , Glicosilação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Processamento de Proteína Pós-Traducional/fisiologia , Ratos , Ratos Sprague-Dawley
6.
Behav Neurosci ; 129(3): 321-30, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25914924

RESUMO

There is growing evidence that metabolic stressors increase an organism's risk of depression. Chronic mild stress is a popular animal model of depression and several serendipitous findings have suggested that food deprivation prior to sucrose testing in this model is necessary to observe anhedonic behaviors. Here, we directly tested this hypothesis by exposing animals to chronic mild stress and used an overnight 2-bottle sucrose test (food ad libitum) on Day 5 and 10, then food and water deprive animals overnight and tested their sucrose consumption and preference in a 1-hr sucrose test the following morning. Approximately 65% of stressed animals consumed sucrose and showed a sucrose preference similar to nonstressed controls in an overnight sucrose test, and 35% showed a decrease in sucrose intake and preference. Following overnight food and water deprivation the previously "resilient" animals showed a significant decrease in sucrose preference and greatly reduced sucrose intake. In addition, we evaluated whether the onset of anhedonia following food and water deprivation corresponds to alterations in corticosterone, epinephrine, circulating glucose, or interleukin-1 beta (IL-1ß) expression in limbic brain areas. Although all stressed animals showed adrenal hypertrophy and elevated circulating epinephrine, only stressed animals that were food deprived were hypoglycemic compared with food-deprived controls. Additionally, food and water deprivation significantly increased hippocampus IL-1ß while food and water deprivation only increased hypothalamus IL-1ß in stress-susceptible animals. These data demonstrate that metabolic stress of food and water deprivation interacts with chronic stressor exposure to induce physiological and anhedonic responses.


Assuntos
Sacarose Alimentar , Preferências Alimentares/fisiologia , Hipocampo/metabolismo , Hipotálamo/metabolismo , Interleucina-1beta/metabolismo , Estresse Fisiológico/fisiologia , Animais , Glicemia/metabolismo , Peso Corporal/fisiologia , Doença Crônica , Corticosterona/sangue , Modelos Animais de Doenças , Epinefrina/sangue , Privação de Alimentos/fisiologia , Masculino , Ratos Endogâmicos F344 , Fatores de Tempo , Privação de Água/fisiologia
7.
J Neurophysiol ; 113(5): 1283-6, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24990562

RESUMO

Current theories on the pathogenesis of autism spectrum disorders (ASD) maintain that the associated cognitive and behavioral symptoms are caused by aberrant synaptic transmission affecting specific brain circuits. Transgenic mouse models have implicated the involvement of cell adhesion proteins in synaptic dysfunction and ASD pathogenesis. Recently, Aoto et al. (Cell 154: 75-88, 2013) has shown that alternatively spliced neurexin proteins affect the efficacy of AMPA receptor-mediated excitatory currents in both cultured neuronal networks and acute hippocampal slices constituting a potential ASD-related electrophysiological phenotype.


Assuntos
Transtorno do Espectro Autista/metabolismo , Caderinas/metabolismo , Transmissão Sináptica , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Caderinas/genética , Humanos
8.
J Neuroimmunol ; 254(1-2): 161-4, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22944319

RESUMO

Exaggerated pro-inflammatory cytokine production by primed microglia is thought to mediate pathology during stress, aging, and neurodegeneration. Recently, it was demonstrated that beta-adrenergic receptor (ß-AR) antagonism prevents priming of microglia in mice exposed to chronic stress. To determine if ß-AR stimulation is sufficient to prime microglia, rats were intra-cerebroventricularly administered isoproterenol (ß-AR agonist) or vehicle and 24 h later hippocampal microglia were placed in culture with media or LPS. Prior isoproterenol treatment significantly enhanced IL-1ß and IL-6, but not TNF-α production following LPS stimulation. These data suggest that central ß-AR stimulation is sufficient to prime microglia cytokine responses.


Assuntos
Citocinas/metabolismo , Hipocampo/citologia , Microglia/metabolismo , Receptores Adrenérgicos beta/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Análise de Variância , Animais , Antígeno CD11b/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Hipocampo/efeitos dos fármacos , Isoproterenol/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Microglia/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...