Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38894809

RESUMO

Several strains of Caenorhabditis elegans with mutations in brc-1 or brd-1 are readily available to aid in elucidating the functions of these two genes in DNA damage repair, meiosis, and gene repression. DW102 is the only C. elegans strain to our knowledge with mutations in both brc-1 and brd-1 . However, several groups have reported the DW102 strain is indistinguishable from wild-type when observing levels of embryonic lethality, sensitivity to radiation, and rates of male progeny, while strains with mutations in either brc-1 or brd-1 display increased occurrence of these phenotypes. Here, RT-qPCR analysis of the cyp-13A gene family, reveals distinctive and aberrant expression patterns in DW102 compared to other brc-1 or brd-1 mutant strains underscoring the need for caution in choosing this strain to draw conclusions about brc-1 and brd-1 functions.

2.
J Org Chem ; 88(5): 2692-2702, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36780253

RESUMO

Experiment and computation are used to develop a model to rapidly predict solution structures of macrocycles sharing the same Murcko framework. These 24-atom triazine macrocycles result from the quantitative dimerization of identical monomers presenting a hydrazine group and an acetal tethered to an amino acid linker. Monomers comprising glycine and the ß-branched amino acids threonine, valine, and isoleucine yield macrocycles G-G, T-T, V-V, and I-I, respectively. Elements common to all members of the framework include the efficiency of macrocyclization (quantitative), the solution- and solid-state structures (folded), the site of protonation (opposite the auxiliary dimethylamine group), the geometry of the hydrazone (E), the C2 symmetry of the subunits (conserved), and the rotamer state adopted. In aggregate, the data reveal metrics predictive of the three-dimensional solution structure that derive from the fingerprint region of the 1D 1H spectrum and a network of rOes from a single resonance. The metrics also afford delineation of more nuanced structural features that allow subpopulations to be identified among the members of the framework. Well-tempered metadynamics provides free energy surfaces and population distributions of these macrocycles. The areas of the free energy surface decrease with increasing steric bulk (G-G > V-V ∼ T-T > I-I). In addition, the surfaces are increasingly isoenergetic with decreasing steric bulk (G-G > V-V ∼ T-T > I-I).


Assuntos
Aminoácidos , Valina , Conformação Molecular , Isoleucina , Treonina
3.
Nucleic Acids Res ; 51(5): 2108-2116, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36250637

RESUMO

The tumor-suppressor proteins BRCA1 and BARD1 function as an E3 ubiquitin ligase to facilitate transcriptional repression and DNA damage repair. This is mediated in-part through its ability to mono-ubiquitylate histone H2A in nucleosomes. Studies in Caenorhabditis elegans have been used to elucidate numerous functions of BRCA1 and BARD1; however, it has not been established that the C. elegans orthologs, BRC-1 and BRD-1, retain all the functions of their human counterparts. Here we explore the conservation of enzymatic activity toward nucleosomes which leads to repression of estrogen-metabolizing cytochrome P450 (cyp) genes in humans. Biochemical assays establish that BRC-1 and BRD-1 contribute to ubiquitylation of histone H2A in the nucleosome. Mutational analysis shows that while BRC-1 likely binds the nucleosome using a conserved interface, BRD-1 and BARD1 have evolved different modes of binding, resulting in a difference in the placement of ubiquitin on H2A. Gene expression analysis reveals that in spite of this difference, BRC-1 and BRD-1 also contribute to cyp gene repression in C. elegans. Establishing conservation of these functions in C. elegans allows for use of this powerful model organism to address remaining questions regarding regulation of gene expression by BRCA1 and BARD1.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Regulação da Expressão Gênica , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases , Animais , Humanos , Proteína BRCA1/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
Biochem J ; 478(18): 3467-3483, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34591954

RESUMO

Mutations in breast cancer type 1 susceptibility protein (BRCA1) and its heterodimeric binding partner BARD1 confer a high risk for the development of breast and ovarian cancers. The sole enzymatic function of the BRCA1/BARD1 complex is as a RING-type E3 ubiquitin (Ub) ligase, leading to the deposition of Ub signals onto a variety of substrate proteins. Distinct types of Ub signals deposited by BRCA1/BARD1 (i.e. degradative vs. non-degradative; mono-Ub vs. poly-Ub chains) on substrate proteins mediate aspects of its function in DNA double-stranded break repair, cell-cycle regulation, and transcriptional regulation. While cancer-predisposing mutations in both subunits lead to the inactivation of BRCA1/BARD1 ligase activity, controversy remains as to whether its Ub ligase activity directly inhibits tumorigenesis. Investigation of BRCA1/BARD1 substrates using rigorous, well-validated mutants and experimental systems will ultimately clarify the role of its ligase activity in cancer and possibly establish prognostic and diagnostic metrics for patients with mutations. In this review, we discuss the Ub ligase function of BRCA1/BARD1, highlighting experimental approaches, mechanistic considerations, and reagents that are useful in the study of substrate ubiquitylation. We also discuss the current understanding of two well-established BRCA1/BARD1 substrates (nucleosomal H2A and estrogen receptor α) and several recently discovered substrates (p50, NF2, Oct1, and LARP7). Lessons from the current body of work should provide a road map to researchers examining novel substrates and biological functions attributed to BRCA1/BARD1 Ub ligase activity.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Carcinogênese/genética , Neoplasias Ovarianas/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Humanos , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
Nat Struct Mol Biol ; 28(3): 268-277, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589814

RESUMO

Mutations in the E3 ubiquitin ligase RING domains of BRCA1/BARD1 predispose carriers to breast and ovarian cancers. We present the structure of the BRCA1/BARD1 RING heterodimer with the E2 enzyme UbcH5c bound to its cellular target, the nucleosome, along with biochemical data that explain how the complex selectively ubiquitylates lysines 125, 127 and 129 in the flexible C-terminal tail of H2A in a fully human system. The structure reveals that a novel BARD1-histone interface couples to a repositioning of UbcH5c compared to the structurally similar PRC1 E3 ligase Ring1b/Bmi1 that ubiquitylates H2A Lys119 in nucleosomes. This interface is sensitive to both H3 Lys79 methylation status and mutations found in individuals with cancer. Furthermore, NMR reveals an unexpected mode of E3-mediated substrate regulation through modulation of dynamics in the C-terminal tail of H2A. Our findings provide insight into how E3 ligases preferentially target nearby lysine residues in nucleosomes by a steric occlusion and distancing mechanism.


Assuntos
Proteína BRCA1/química , Proteína BRCA1/metabolismo , Histonas/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteína BRCA1/ultraestrutura , Sítios de Ligação , Domínio Catalítico , Microscopia Crioeletrônica , Histonas/química , Histonas/ultraestrutura , Humanos , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Ligação Proteica , Reprodutibilidade dos Testes , Proteínas Supressoras de Tumor/ultraestrutura , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/ultraestrutura , Ubiquitina-Proteína Ligases/ultraestrutura
6.
Proc Natl Acad Sci U S A ; 115(7): 1558-1563, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29386386

RESUMO

RING1 is an E3-ubiquitin ligase that is involved in epigenetic control of transcription during development. It is a component of the polycomb repressive complex 1, and its role in that complex is to ubiquitylate histone H2A. In a 13-year-old girl with syndromic neurodevelopmental disabilities, we identified a de novo mutation, RING1 p.R95Q, which alters a conserved arginine residue in the catalytic RING domain. In vitro assays demonstrated that the mutant RING1 retains capacity to catalyze ubiquitin chain formation, but is defective in its ability to ubiquitylate histone H2A in nucleosomes. Consistent with this in vitro effect, cells of the patient showed decreased monoubiquitylation of histone H2A. We modeled the mutant RING1 in Caenorhabditis elegans by editing the comparable amino acid change into spat-3, the suggested RING1 ortholog. Animals with either the missense mutation or complete knockout of spat-3 were defective in monoubiquitylation of histone H2A and had defects in neuronal migration and axon guidance. Relevant to our patient, animals heterozygous for either the missense or knockout allele also showed neuronal defects. Our results support three conclusions: mutation of RING1 is the likely cause of a human neurodevelopmental syndrome, mutation of RING1 can disrupt histone H2A ubiquitylation without disrupting RING1 catalytic activity, and the comparable mutation in C. elegans spat-3 both recapitulates the effects on histone H2A ubiquitylation and leads to neurodevelopmental abnormalities. This role for RING1 adds to our understanding of the importance of aberrant epigenetic effects as causes of human neurodevelopmental disorders.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Transtornos do Neurodesenvolvimento/genética , Complexo Repressor Polycomb 1/genética , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Estudos de Casos e Controles , Histonas/genética , Histonas/metabolismo , Humanos , Transtornos do Neurodesenvolvimento/patologia , Nucleossomos/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
7.
Proc Natl Acad Sci U S A ; 115(6): 1316-1321, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29367421

RESUMO

Missense mutations that disrupt the RING domain of the tumor suppressor gene BRCA1 lead to increased risk of breast and ovarian cancer. The BRCA1 RING domain is a ubiquitin ligase, whose structure and function rely critically on forming a heterodimer with BARD1, which also harbors a RING domain. The function of the BARD1 RING domain is unknown. In families severely affected with breast cancer, we identified inherited BARD1 missense mutations Cys53Trp, Cys71Tyr, and Cys83Arg that alter three zinc-binding residues of the BARD1 RING domain. Each of these mutant BARD1 proteins retained the ability to form heterodimeric complexes with BRCA1 to make an active ubiquitin ligase, but the mutant BRCA1/BARD1 complexes were deficient in binding to nucleosomes and in ubiquitylating histone H2A. The BARD1 mutations also caused loss of transcriptional repression of BRCA1-regulated estrogen metabolism genes CYP1A1 and CYP3A4; breast epithelial cells edited to create heterozygous loss of BARD1 showed significantly higher expression of CYP1A1 and CYP3A4 Reintroduction of wild-type BARD1 into these cells restored CYP1A1 and CYP3A4 transcription to normal levels, but introduction of the cancer-predisposing BARD1 RING mutants failed to do so. These results indicate that an intact BARD1 RING domain is critical to BRCA1/BARD1 binding to nucleosomes and hence to ubiquitylation of histone H2A and also critical to transcriptional repression of BRCA1-regulated genes active in estrogen metabolism.


Assuntos
Estrogênios/metabolismo , Histonas/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Estrogênios/genética , Feminino , Regulação da Expressão Gênica , Histonas/genética , Humanos , Masculino , Mutação de Sentido Incorreto , Nucleossomos/metabolismo , Domínios Proteicos , Proteínas Supressoras de Tumor/química , Ubiquitina-Proteína Ligases/química , Ubiquitinação
8.
Biochemistry ; 56(21): 2637-2640, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28505428

RESUMO

Conserved homology-1 (C1) domains are peripheral membrane domains that target their host proteins to diacylglycerol (DAG)-containing membranes. It has been previously shown that a conservative aromatic mutation of a single residue in the C1 domain has a profound effect on DAG affinity. We report that the "DAG-toggling" mutation changes the conformational dynamics of the loop region that forms the binding site for the C1 activators. Moreover, there is a correlation among the residue identity at the mutation site, DAG affinity, and loop dynamics in four C1 variants. We propose that "toggling" of DAG affinity may occur through modulation of both protein-membrane interactions and the geometry of the activator-binding cleft, with the loop dynamics being responsible for the latter.


Assuntos
Diglicerídeos/química , Proteína Quinase C/química , Diglicerídeos/metabolismo , Modelos Moleculares , Conformação Proteica , Proteína Quinase C/metabolismo , Termodinâmica
9.
Protein Sci ; 26(3): 475-483, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27977889

RESUMO

The tumor-suppressor protein BRCA1 works with BARD1 to catalyze the transfer of ubiquitin onto protein substrates. The N-terminal regions of BRCA1 and BARD1 that contain their RING domains are responsible for dimerization and ubiquitin ligase activity. This activity is a common feature among hundreds of human RING domain-containing proteins. RING domains bind and activate E2 ubiquitin-conjugating enzymes to promote ubiquitin transfer to substrates. We show that the identity of residues at specific positions in the RING domain can tune activity levels up or down. We report substitutions that create a structurally intact BRCA1/BARD1 heterodimer that is inactive in vitro with all E2 enzymes. Other substitutions in BRCA1 or BARD1 RING domains result in hyperactivity, revealing that both proteins have evolved attenuated activity. Loss of attenuation results in decreased product specificity, providing a rationale for why nature has tuned BRCA1 activity. The ability to tune BRCA1 provides powerful tools for understanding its biological functions and provides a basis to assess mechanisms for rescuing the activity of cancer-associated variations. Beyond the applicability to BRCA1, we show the identity of residues at tuning positions that can be used to predict and modulate the activity of an unrelated RING E3 ligase. These findings provide valuable insights into understanding the mechanism and function of RING E3 ligases like BRCA1.


Assuntos
Proteína BRCA1/química , Multimerização Proteica , Proteínas Supressoras de Tumor/química , Ubiquitina-Proteína Ligases/química , Ubiquitina/química , Ubiquitinação , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Humanos , Domínios Proteicos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
Cell Res ; 26(4): 423-40, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27002219

RESUMO

Ubiquitin-conjugating enzymes (E2s) are the central players in the trio of enzymes responsible for the attachment of ubiquitin (Ub) to cellular proteins. Humans have ∼40 E2s that are involved in the transfer of Ub or Ub-like (Ubl) proteins (e.g., SUMO and NEDD8). Although the majority of E2s are only twice the size of Ub, this remarkable family of enzymes performs a variety of functional roles. In this review, we summarize common functional and structural features that define unifying themes among E2s and highlight emerging concepts in the mechanism and regulation of E2s.


Assuntos
Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Enzimas de Conjugação de Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo
11.
J Biol Chem ; 290(35): 21244-51, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26187467

RESUMO

Since its discovery as a post-translational signal for protein degradation, our understanding of ubiquitin (Ub) has vastly evolved. Today, we recognize that the role of Ub signaling is expansive and encompasses diverse processes including cell division, the DNA damage response, cellular immune signaling, and even organismal development. With such a wide range of functions comes a wide range of regulatory mechanisms that control the activity of the ubiquitylation machinery. Ub attachment to substrates occurs through the sequential action of three classes of enzymes, E1s, E2s, and E3s. In humans, there are 2 E1s, ∼ 35 E2s, and hundreds of E3s that work to attach Ub to thousands of cellular substrates. Regulation of ubiquitylation can occur at each stage of the stepwise Ub transfer process, and substrates can also impact their own modification. Recent studies have revealed elegant mechanisms that have evolved to control the activity of the enzymes involved. In this minireview, we highlight recent discoveries that define some of the various mechanisms by which the activities of E3-Ub ligases are regulated.


Assuntos
Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas Culina/metabolismo , Humanos , Modelos Moleculares , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitinação
12.
J Biol Chem ; 289(40): 27653-64, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25124034

RESUMO

Conventional and novel isoenzymes of PKC are activated by the membrane-embedded second messenger diacylglycerol (DAG) through its interactions with the C1 regulatory domain. The affinity of C1 domains to DAG varies considerably among PKCs. To gain insight into the origin of differential DAG affinities, we conducted high-resolution NMR studies of C1B domain from PKCδ (C1Bδ) and its W252Y variant. The W252Y mutation was previously shown to render C1Bδ less responsive to DAG (Dries, D. R., Gallegos, L. L., and Newton, A. C. (2007) A single residue in the C1 domain sensitizes novel protein kinase C isoforms to cellular diacylglycerol production. J. Biol. Chem. 282, 826-830) and thereby emulate the behavior of C1B domains from conventional PKCs that have a conserved Tyr at the equivalent position. Our data revealed that W252Y mutation did not perturb the conformation of C1Bδ in solution but significantly reduced its propensity to partition into a membrane-mimicking environment in the absence of DAG. Using detergent micelles doped with a paramagnetic lipid, we determined that both the residue identity at position 252 and complexation with diacylglycerol influence the geometry of C1Bδ-micelle interactions. In addition, we identified the C-terminal helix α1 of C1Bδ as an interaction site with the head groups of phosphatidylserine, a known activator of PKCδ. Taken together, our studies (i) reveal the identities of C1Bδ residues involved in interactions with membrane-mimicking environment, DAG, and phosphatidylserine, as well as the affinities associated with each event and (ii) suggest that the initial ligand-independent membrane recruitment of C1B domains, which is greatly facilitated by the interfacial partitioning of Trp-252, is responsible, at least in part, for the differential DAG affinities.


Assuntos
Diglicerídeos/metabolismo , Proteína Quinase C-delta/química , Proteína Quinase C-delta/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Diglicerídeos/química , Cinética , Modelos Moleculares , Ligação Proteica , Proteína Quinase C-delta/genética , Estrutura Terciária de Proteína , Ratos
13.
Biochemistry ; 51(37): 7263-77, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22913772

RESUMO

Structural cysteine-rich Zn(2+) sites that stabilize protein folds are considered to be unreactive. In this article, we identified a reactive cysteine residue, Cys151, in a treble-clef zinc finger with a Cys(3)His coordination sphere. The protein in question is the C1B domain of Protein Kinase Cα (PKCα). Mass-tagging cysteine assays of several C1B variants were employed to ascertain the site specificity of the covalent modification. The reactivity of Cys151 in C1B also manifests itself in the structural dynamics of the Zn(2+) coordination sphere where the Sγ of Cys151 alternates between the Zn(2+)-bound thiolate and free thiol states. We used NMR-detected pH titrations, ZZ-exchange spectroscopy, and residual dipolar coupling (RDC)-driven structure refinement to characterize the two exchanging conformations of C1B that differ in zinc coordination. Our data suggest that Cys151 serves as an entry point for the reactive oxygen species that activate PKCα in a process involving Zn(2+) release.


Assuntos
Cisteína/química , Proteína Quinase C-alfa/química , Espécies Reativas de Oxigênio/química , Zinco/química , Animais , Sítios de Ligação , Cisteína/metabolismo , Camundongos , Ressonância Magnética Nuclear Biomolecular , Proteína Quinase C-alfa/metabolismo , Estrutura Terciária de Proteína , Espécies Reativas de Oxigênio/metabolismo , Zinco/metabolismo , Dedos de Zinco
15.
J Mol Biol ; 408(5): 949-70, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21419781

RESUMO

C1 domains are independently folded modules that are responsible for targeting their parent proteins to lipid membranes containing diacylglycerol (DAG), a ubiquitous second messenger. The DAG binding affinities of C1 domains determine the threshold concentration of DAG required for the propagation of signaling response and the selectivity of this response among DAG receptors in the cell. The structural information currently available for C1 domains offers little insight into the molecular basis of their differential DAG binding affinities. In this work, we characterized the C1B domain of protein kinase Cα (C1Bα) and its diagnostic mutant, Y123W, using solution NMR methods and molecular dynamics simulations. The mutation did not perturb the C1Bα structure or the sub-nanosecond dynamics of the protein backbone, but resulted in a >100-fold increase in DAG binding affinity and a substantial change in microsecond timescale conformational dynamics, as quantified by NMR rotating-frame relaxation-dispersion methods. The differences in the conformational exchange behavior between wild type and Y123W C1Bα were localized to the hinge regions of ligand-binding loops. Molecular dynamics simulations provided insight into the identity of the exchanging conformers and revealed the significance of a particular residue (Gln128) in modulating the geometry of the ligand-binding site. Taken together with the results of binding studies, our findings suggest that the conformational dynamics and preferential partitioning of the tryptophan side chain into the water-lipid interface are important factors that modulate the DAG binding properties of the C1 domains.


Assuntos
Diglicerídeos/química , Proteína Quinase C-alfa/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Camundongos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Proteína Quinase C-alfa/genética , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...