Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20202028

RESUMO

BackgroundSince the emergence of COVID-19, tens of millions of people have been infected, and the global death toll approached 1 million by September 2020. Understanding the transmission dynamics of emerging pathogens, such as SARS-CoV-2 and other novel human coronaviruses is imperative in designing effective control measures. Viral load contributes to the transmission potential of the virus, but findings around the temporal viral load dynamics, particularly the peak of transmission potential, remain inconsistent across studies due to limited sample sizes. MethodsWe searched PubMed through June 8th 2020 and collated unique individual-patient data (IPD) from papers reporting temporal viral load and shedding data from coronaviruses in adherence with the PRISMA-IPD guidelines. We analyzed viral load trajectories using a series of generalized additive models and analyzed the duration of viral shedding by fitting log-normal models accounting for interval censoring. ResultsWe identified 115 relevant papers and obtained data from 66 (57.4%) - representing a total of 1198 patients across 14 countries. SARS-CoV-2 viral load peaks prior to symptom onset and remains elevated for up to three weeks, while MERS-CoV and SARS-CoV viral loads peak after symptom onset. SARS-CoV-2, MERS-CoV, and SARS-CoV had median viral shedding durations of 4.8, 4.2, and 1.2 days after symptom onset. Disease severity, age, and specimen type all have an effect on viral load, but sex does not. DiscussionUsing a pooled analysis of the largest collection of IPD on viral load to date, we are the first to report that SARS-CoV-2 viral load peaks prior to - not at - symptom onset. Detailed estimation of the trajectories of viral load and virus shedding can inform the transmission, mathematical modeling, and clinical implications of SARS-CoV-2, MERS-CoV, and SARS-CoV infection.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20097469

RESUMO

The COVID-19 pandemic has created an urgent need for models that can project epidemic trends, explore intervention scenarios, and estimate resource needs. Here we describe the methodology of Covasim (COVID-19 Agent-based Simulator), an open-source model developed to help address these questions. Covasim includes country-specific demographic information on age structure and population size; realistic transmission networks in different social layers, including households, schools, workplaces, long-term care facilities, and communities; age-specific disease outcomes; and intrahost viral dynamics, including viral-load-based transmissibility. Covasim also supports an extensive set of interventions, including non-pharmaceutical interventions, such as physical distancing and protective equipment; pharmaceutical interventions, including vaccination; and testing interventions, such as symptomatic and asymptomatic testing, isolation, contact tracing, and quarantine. These interventions can incorporate the effects of delays, loss-to-follow-up, micro-targeting, and other factors. Implemented in pure Python, Covasim has been designed with equal emphasis on performance, ease of use, and flexibility: realistic and highly customized scenarios can be run on a standard laptop in under a minute. In collaboration with local health agencies and policymakers, Covasim has already been applied to examine epidemic dynamics and inform policy decisions in more than a dozen countries in Africa, Asia-Pacific, Europe, and North America.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...