Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36577525

RESUMO

Myoepithelial carcinomas (MECs) of soft tissue are rare and aggressive tumors affecting young adults and children, but their molecular landscape has not been comprehensively explored through genome sequencing. Here, we present the whole-exome sequencing (WES), whole-genome sequencing (WGS), and RNA sequencing findings of two MECs. Patients 1 and 2 (P1, P2), both male, were diagnosed at 27 and 37 yr of age, respectively, with shoulder (P1) and inguinal (P2) soft tissue tumors. Both patients developed metastatic disease, and P2 died of disease. P1 tumor showed a rhabdoid cytomorphology and a complete loss of INI1 (SMARCB1) expression, associated with a homozygous SMARCB1 deletion. The tumor from P2 showed a clear cell/small cell morphology, retained INI1 expression and strong S100 positivity. By WES and WGS, tumors from both patients displayed low tumor mutation burdens, and no targetable alterations in cancer genes were detected. P2's tumor harbored an EWSR1::KLF15 rearrangement, whereas the tumor from P1 showed a novel ASCC2::GGNBP2 fusion. WGS evidenced a complex genomic event involving mainly Chromosomes 17 and 22 in the tumor from P1, which was consistent with chromoplexy. These findings are consistent with previous reports of EWSR1 rearrangements (50% of cases) in MECs and provide a genetic basis for the loss of SMARCB1 protein expression observed through immunohistochemistry in 10% of 40% of MEC cases. The lack of additional driver mutations in these tumors supports the hypothesis that these alterations are the key molecular events in MEC evolution. Furthermore, the presence of complex structural variant patterns, invisible to WES, highlights the novel biological insights that can be gained through the application of WGS to rare cancers.


Assuntos
Carcinoma , Mioepitelioma , Neoplasias de Tecidos Moles , Criança , Adulto Jovem , Humanos , Masculino , Mioepitelioma/genética , Mioepitelioma/diagnóstico , Mioepitelioma/patologia , Neoplasias de Tecidos Moles/genética , Carcinoma/genética , Biomarcadores Tumorais/genética
2.
Front Genet ; 12: 722602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567074

RESUMO

Identity-by-descent (IBD), the detection of shared segments inherited from a common ancestor, is a fundamental concept in genomics with broad applications in the characterization and analysis of genomes. While historically the concept of IBD was extensively utilized through linkage analyses and in studies of founder populations, applications of IBD-based methods subsided during the genome-wide association study era. This was primarily due to the computational expense of IBD detection, which becomes increasingly relevant as the field moves toward the analysis of biobank-scale datasets that encompass individuals from highly diverse backgrounds. To address these computational barriers, the past several years have seen new methodological advances enabling IBD detection for datasets in the hundreds of thousands to millions of individuals, enabling novel analyses at an unprecedented scale. Here, we describe the latest innovations in IBD detection and describe opportunities for the application of IBD-based methods across a broad range of questions in the field of genomics.

3.
Commun Med (Lond) ; 1(1): 42, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35072167

RESUMO

BACKGROUND: Since the onset of the SARS-CoV-2 pandemic, most clinical testing has focused on RT-PCR1. Host epigenome manipulation post coronavirus infection2-4 suggests that DNA methylation signatures may differentiate patients with SARS-CoV-2 infection from uninfected individuals, and help predict COVID-19 disease severity, even at initial presentation. METHODS: We customized Illumina's Infinium MethylationEPIC array to enhance immune response detection and profiled peripheral blood samples from 164 COVID-19 patients with longitudinal measurements of disease severity and 296 patient controls. RESULTS: Epigenome-wide association analysis revealed 13,033 genome-wide significant methylation sites for case-vs-control status. Genes and pathways involved in interferon signaling and viral response were significantly enriched among differentially methylated sites. We observe highly significant associations at genes previously reported in genetic association studies (e.g. IRF7, OAS1). Using machine learning techniques, models built using sparse regression yielded highly predictive findings: cross-validated best fit AUC was 93.6% for case-vs-control status, and 79.1%, 80.8%, and 84.4% for hospitalization, ICU admission, and progression to death, respectively. CONCLUSIONS: In summary, the strong COVID-19-specific epigenetic signature in peripheral blood driven by key immune-related pathways related to infection status, disease severity, and clinical deterioration provides insights useful for diagnosis and prognosis of patients with viral infections.

4.
Commun Med (Lond) ; 1(1): 42, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36750622

RESUMO

BACKGROUND: Since the onset of the SARS-CoV-2 pandemic, most clinical testing has focused on RT-PCR1. Host epigenome manipulation post coronavirus infection2-4 suggests that DNA methylation signatures may differentiate patients with SARS-CoV-2 infection from uninfected individuals, and help predict COVID-19 disease severity, even at initial presentation. METHODS: We customized Illumina's Infinium MethylationEPIC array to enhance immune response detection and profiled peripheral blood samples from 164 COVID-19 patients with longitudinal measurements of disease severity and 296 patient controls. RESULTS: Epigenome-wide association analysis revealed 13,033 genome-wide significant methylation sites for case-vs-control status. Genes and pathways involved in interferon signaling and viral response were significantly enriched among differentially methylated sites. We observe highly significant associations at genes previously reported in genetic association studies (e.g. IRF7, OAS1). Using machine learning techniques, models built using sparse regression yielded highly predictive findings: cross-validated best fit AUC was 93.6% for case-vs-control status, and 79.1%, 80.8%, and 84.4% for hospitalization, ICU admission, and progression to death, respectively. CONCLUSIONS: In summary, the strong COVID-19-specific epigenetic signature in peripheral blood driven by key immune-related pathways related to infection status, disease severity, and clinical deterioration provides insights useful for diagnosis and prognosis of patients with viral infections.


Viral infections affect the body in many ways, including via changes to the epigenome, the sum of chemical modifications to an individual's collection of genes that affect gene activity. Here, we analyzed the epigenome in blood samples from people with and without COVID-19 to determine whether we could find changes consistent with SARS-CoV-2 infection. Using a combination of statistical and machine learning techniques, we identify markers of SARS-CoV-2 infection as well as of severity and progression of COVID-19 disease. These signals of disease progression were present from the initial blood draw when first walking into the hospital. Together, these approaches demonstrate the potential of measuring the epigenome for monitoring SARS-CoV-2 status and severity.

5.
Curr Dev Nutr ; 4(1): nzz132, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32175519

RESUMO

BACKGROUND: Maternal dietary restriction and supplementation of one-carbon (1C) metabolites can impact offspring growth and DNA methylation. However, longitudinal research of 1C metabolite and amino acid (AA) concentrations over the reproductive cycle of human pregnancy is limited. OBJECTIVE: To investigate longitudinal 1C metabolite and AA concentrations prior to and during pregnancy and the effects of a small-quantity lipid-based nutrition supplement (LNS) containing >20 micronutrients and prepregnancy BMI (ppBMI). METHODS: This study was an ancillary study of the Women First Trial (NCT01883193, clinicaltrials.gov) focused on a subset of Guatemalan women (n = 134), 49% of whom entered pregnancy with a BMI ≥25 kg/m2. Ninety-five women received LNS during pregnancy (+LNS group), while the remainder did not (-LNS group). A subset of women from the Pakistan study site (n = 179) were used as a replication cohort, 124 of whom received LNS. Maternal blood was longitudinally collected on dried blood spot (DBS) cards at preconception, and at 12 and 34 wk gestation. A targeted metabolomics assay was performed on DBS samples at each time point using LC-MS/MS. Longitudinal analyses were performed using linear mixed modeling to investigate the influence of time, LNS, and ppBMI. RESULTS: Concentrations of 23 of 27 metabolites, including betaine, choline, and serine, changed from preconception across gestation after application of a Bonferroni multiple testing correction (P < 0.00185). Sixteen of those metabolites showed similar changes in the replication cohort. Asymmetric and symmetric dimethylarginine were decreased by LNS in the participants from Guatemala. Only tyrosine was statistically associated with ppBMI at both study sites. CONCLUSIONS: Time influenced most 1C metabolite and AA concentrations with a high degree of similarity between the 2 diverse study populations. These patterns were not significantly altered by LNS consumption or ppBMI. Future investigations will focus on 1C metabolite changes associated with infant outcomes, including DNA methylation. This trial was registered at clinicaltrials.gov as NCT01883193.

6.
Nat Med ; 26(1): 143-150, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873310

RESUMO

De novo mutations arising on the paternal chromosome make the largest known contribution to autism risk, and correlate with paternal age at the time of conception. The recurrence risk for autism spectrum disorders is substantial, leading many families to decline future pregnancies, but the potential impact of assessing parental gonadal mosaicism has not been considered. We measured sperm mosaicism using deep-whole-genome sequencing, for variants both present in an offspring and evident only in father's sperm, and identified single-nucleotide, structural and short tandem-repeat variants. We found that mosaicism quantification can stratify autism spectrum disorders recurrence risk due to de novo mutations into a vast majority with near 0% recurrence and a small fraction with a substantially higher and quantifiable risk, and we identify novel mosaic variants at risk for transmission to a future offspring. This suggests, therefore, that genetic counseling would benefit from the addition of sperm mosaicism assessment.


Assuntos
Transtorno Autístico/genética , Predisposição Genética para Doença , Mosaicismo , Espermatozoides/metabolismo , Transtorno Autístico/sangue , Feminino , Humanos , Masculino , Mutação/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Recidiva , Fatores de Risco
7.
Artigo em Inglês | MEDLINE | ID: mdl-31592503

RESUMO

PURPOSE: We developed a precision medicine program for patients with advanced cancer using integrative whole-exome sequencing and transcriptome analysis. PATIENTS AND METHODS: Five hundred fifteen patients with locally advanced/metastatic solid tumors were prospectively enrolled, and paired tumor/normal sequencing was performed. Seven hundred fifty-nine tumors from 515 patients were evaluated. RESULTS: Most frequent tumor types were prostate (19.4%), brain (16.5%), bladder (15.4%), and kidney cancer (9.2%). Most frequently altered genes were TP53 (33%), CDKN2A (11%), APC (10%), KTM2D (8%), PTEN (8%), and BRCA2 (8%). Pathogenic germline alterations were present in 10.7% of patients, most frequently CHEK2 (1.9%), BRCA1 (1.5%), BRCA2 (1.5%), and MSH6 (1.4%). Novel gene fusions were identified, including a RBM47-CDK12 fusion in a metastatic prostate cancer sample. The rate of clinically relevant alterations was 39% by whole-exome sequencing, which was improved by 16% by adding RNA sequencing. In patients with more than one sequenced tumor sample (n = 146), 84.62% of actionable mutations were concordant. CONCLUSION: Integrative analysis may uncover informative alterations for an advanced pan-cancer patient population. These alterations are consistent in spatially and temporally heterogeneous samples.

8.
Am J Hum Genet ; 99(4): 912-916, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27616480

RESUMO

The risk of epilepsy among individuals with intellectual disability (ID) is approximately ten times that of the general population. From a cohort of >5,000 families affected by neurodevelopmental disorders, we identified six consanguineous families harboring homozygous inactivating variants in MBOAT7, encoding lysophosphatidylinositol acyltransferase (LPIAT1). Subjects presented with ID frequently accompanied by epilepsy and autistic features. LPIAT1 is a membrane-bound phospholipid-remodeling enzyme that transfers arachidonic acid (AA) to lysophosphatidylinositol to produce AA-containing phosphatidylinositol. This study suggests a role for AA-containing phosphatidylinositols in the development of ID accompanied by epilepsy and autistic features.


Assuntos
Aciltransferases/genética , Transtorno Autístico/genética , Epilepsia/genética , Deficiência Intelectual/genética , Proteínas de Membrana/genética , Mutação , Aciltransferases/metabolismo , Ácido Araquidônico/metabolismo , Transtorno Autístico/complicações , Transtorno Autístico/enzimologia , Transtorno Autístico/metabolismo , Criança , Pré-Escolar , Consanguinidade , Epilepsia/complicações , Epilepsia/enzimologia , Epilepsia/metabolismo , Feminino , Homozigoto , Humanos , Lactente , Deficiência Intelectual/complicações , Deficiência Intelectual/enzimologia , Deficiência Intelectual/metabolismo , Lisofosfolipídeos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Linhagem , Fosfatidilinositóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...