Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 85(5): 2747-2760, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33270942

RESUMO

PURPOSE: Segmented Cartesian acquisition in breath hold represents the current gold standard for cardiac functional MRI. However, it is also associated with long imaging times and severe restrictions in arrhythmic or dyspneic patients. Therefore, we introduce a real-time imaging technique based on a spoiled gradient-echo sequence with undersampled spiral k-space trajectories corrected by a gradient pre-emphasis. METHODS: A fully automatic gradient waveform pre-emphasis based on the gradient system transfer function was implemented to compensate for gradient inaccuracies, to optimize fast double-oblique spiral MRI. The framework was tested in a phantom study and subsequently transferred to compressed sensing-accelerated cardiac functional MRI in real time. Spiral acquisitions during breath hold and free breathing were compared with this reference method for healthy subjects (N = 7) as well as patients (N = 2) diagnosed with heart failure and arrhythmia. Left-ventricular volumes and ejection fractions were determined and analyzed using a Wilcoxon signed-rank test. RESULTS: The pre-emphasis successfully reduced typical artifacts caused by k-space misregistrations. Dynamic cardiac imaging was possible in real time (temporal resolution < 50 ms) with high spatial resolution (1.34 × 1.34 mm2 ), resulting in a total scan time of less than 50 seconds for whole heart coverage. Comparable image quality, as well as similar left-ventricular volumes and ejection fractions, were observed for the accelerated and the reference method. CONCLUSION: The proposed technique enables high-resolution real-time cardiac MRI with no need for breath holds and electrocardiogram gating, shortening the duration of an entire functional cardiac exam to less than 1 minute.


Assuntos
Interpretação de Imagem Assistida por Computador , Imagem Cinética por Ressonância Magnética , Suspensão da Respiração , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos Testes
2.
Magn Reson Med ; 85(5): 2595-2607, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33231886

RESUMO

PURPOSE: The aim of this study was to investigate the acceleration potential of wave-CAIPI (controlled aliasing in parallel imaging) for 4D flow MRI, provided that image quality and precision of flow parameters are maintained. METHODS: The 4D flow MRIs with acceleration factor R = 2 were performed on 10 healthy volunteers, using both wave-CAIPI and standard Cartesian/2D-CAIPI sampling for reference. In addition, 1 patient with known aortic valve stenosis was examined. The flow rate ( Q ), net flow ( Qnet ), peak velocity vmax , and net average through-plane velocity ( v¯âŠ¥ ) were calculated in eight analysis planes in the ascending and descending aorta. The acquisitions were retrospectively undersampled (R = 6), and deviations of flow parameters and hemodynamic flow patterns were evaluated. RESULTS: Flow parameters measured with an undersampled wave-CAIPI trajectory showed considerably smaller deviations to the references than the 2D-CAIPI images. For vmax , the mean absolute differences were 6.02±2.08 cm/s versus 14.36±5.68 cm/s; for Qnet , the mean absolute differences were 3.67±1.40 ml versus 5.87±1.91 ml for wave-CAIPI versus 2D-CAIPI, respectively. Noise calculations indicate that the 2D-CAIPI sampling exhibits a 43±38% higher average noise level than the wave-CAIPI technique. Qualitative discrepancies in hemodynamic flow patterns, visualized through streamlines, particle traces and flow velocity vectors, could be reduced by using the undersampled wave-CAIPI trajectory. CONCLUSION: Use of wave-CAIPI instead of 2D-CAIPI sampling in retrospectively 6-fold accelerated 4D flow MRI enhances the precision of flow parameters. The acquisition time of 4D flow measurements could be reduced by a factor of 3, with minimal differences in flow parameters.


Assuntos
Aorta , Imageamento por Ressonância Magnética , Aorta/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Voluntários Saudáveis , Hemodinâmica , Humanos , Imageamento Tridimensional , Reprodutibilidade dos Testes , Estudos Retrospectivos
3.
Magn Reson Med ; 84(6): 3223-3233, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32767457

RESUMO

PURPOSE: The aim of this study was to compare the wave-CAIPI (controlled aliasing in parallel imaging) trajectory to the Cartesian sampling for accelerated free-breathing 4D lung MRI. METHODS: The wave-CAIPI k-space trajectory was implemented in a respiratory self-gated 3D spoiled gradient echo pulse sequence. Trajectory correction applying the gradient system transfer function was used, and images were reconstructed using an iterative conjugate gradient SENSE (CG SENSE) algorithm. Five healthy volunteers and one patient with squamous cell carcinoma in the lung were examined on a clinical 3T scanner, using both sampling schemes. For quantitative comparison of wave-CAIPI and standard Cartesian imaging, the normalized mutual information and the RMS error between retrospectively accelerated acquisitions and their respective references were calculated. The SNR ratios were investigated in a phantom study. RESULTS: The obtained normalized mutual information values indicate a lower information loss due to acceleration for the wave-CAIPI approach. Average normalized mutual information values of the wave-CAIPI acquisitions were 10% higher, compared with Cartesian sampling. Furthermore, the RMS error of the wave-CAIPI technique was lower by 19% and the SNR was higher by 14%. Especially for short acquisition times (down to 1 minute), the undersampled Cartesian images showed an increased artifact level, compared with wave-CAIPI. CONCLUSION: The application of the wave-CAIPI technique to 4D lung MRI reduces undersampling artifacts, in comparison to a Cartesian acquisition of the same scan time. The benefit of wave-CAIPI sampling can therefore be traded for shorter examinations, or enhancing image quality of undersampled 4D lung acquisitions, keeping the scan time constant.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Humanos , Imageamento Tridimensional , Pulmão/diagnóstico por imagem , Imagens de Fantasmas , Estudos Retrospectivos
4.
Magn Reson Med ; 83(4): 1519-1527, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31592559

RESUMO

PURPOSE: The gradient system transfer function (GSTF) characterizes the frequency transfer behavior of a dynamic gradient system and can be used to correct non-Cartesian k-space trajectories. This study analyzes the impact of the gradient coil temperature of a 3T scanner on the GSTF. METHODS: GSTF self- and B0 -cross-terms were acquired for a 3T Siemens scanner (Siemens Healthcare, Erlangen, Germany) using a phantom-based measurement technique. The GSTF terms were measured for various temperature states up to 45°C. The gradient coil temperatures were measured continuously utilizing 12 temperature sensors which are integrated by the vendor. Different modeling approaches were applied and compared. RESULTS: The self-terms depend linearly on temperature, whereas the B0 -cross-term does not. Effects induced by thermal variation are negligible for the phase response. The self-terms are best represented by a linear model including the three gradient coil sensors that showed the maximum temperature dependence for the three axes. The use of time derivatives of the temperature did not lead to an improvement of the model. The B0 -cross-terms can be modeled by a convolution model which considers coil-specific heat transportation. CONCLUSION: The temperature dependency of the GSTF was analyzed for a 3T Siemens scanner. The self- and B0 -cross-terms can be modeled using a linear and convolution modeling approach based on the three main temperature sensor elements.


Assuntos
Imageamento por Ressonância Magnética , Alemanha , Modelos Lineares , Imagens de Fantasmas , Temperatura
5.
Magn Reson Med ; 80(4): 1521-1532, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29479736

RESUMO

PURPOSE: The gradient system transfer function (GSTF) has been used to describe the distorted k-space trajectory for image reconstruction. The purpose of this work was to use the GSTF to determine the pre-emphasis for an undistorted gradient output and intended k-space trajectory. METHODS: The GSTF of the MR system was determined using only standard MR hardware without special equipment such as field probes or a field camera. The GSTF was used for trajectory prediction in image reconstruction and for a gradient waveform pre-emphasis. As test sequences, a gradient-echo sequence with phase-encoding gradient modulation and a gradient-echo sequence with a spiral read-out trajectory were implemented and subsequently applied on a structural phantom and in vivo head measurements. RESULTS: Image artifacts were successfully suppressed by applying the GSTF-based pre-emphasis. Equivalent results are achieved with images acquired using GSTF-based post-correction of the trajectory as a part of image reconstruction. In contrast, the pre-emphasis approach allows reconstruction using the initially intended trajectory. CONCLUSION: The artifact suppression shown for two sequences demonstrates that the GSTF can serve for a novel pre-emphasis. A pre-emphasis based on the GSTF information can be applied to any arbitrary sequence type.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Cabeça/diagnóstico por imagem , Humanos , Modelos Biológicos , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...