Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 2: 62, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30793041

RESUMO

Abiotic and biotic factors control ecosystem biodiversity, but their relative contributions remain unclear. The ultraoligotrophic ecosystem of the Antarctic Dry Valleys, a simple yet highly heterogeneous ecosystem, is a natural laboratory well-suited for resolving the abiotic and biotic controls of community structure. We undertook a multidisciplinary investigation to capture ecologically relevant biotic and abiotic attributes of more than 500 sites in the Dry Valleys, encompassing observed landscape heterogeneities across more than 200 km2. Using richness of autotrophic and heterotrophic taxa as a proxy for functional complexity, we linked measured variables in a parsimonious yet comprehensive structural equation model that explained significant variations in biological complexity and identified landscape-scale and fine-scale abiotic factors as the primary drivers of diversity. However, the inclusion of linkages among functional groups was essential for constructing the best-fitting model. Our findings support the notion that biotic interactions make crucial contributions even in an extremely simple ecosystem.


Assuntos
Artrópodes/fisiologia , Cianobactérias/fisiologia , Fungos/fisiologia , Nematoides/fisiologia , Rotíferos/fisiologia , Tardígrados/fisiologia , Animais , Regiões Antárticas , Artrópodes/classificação , Biodiversidade , Cianobactérias/classificação , Ecossistema , Fungos/classificação , Modelos Estatísticos , Nematoides/classificação , Rotíferos/classificação , Tardígrados/classificação
2.
Environ Monit Assess ; 185(9): 7245-61, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23430067

RESUMO

Cost-effective monitoring is necessary for all investigations of lake ecosystem responses to perturbations and long-term change. Satellite imagery offers the opportunity to extend low-cost monitoring and to examine spatial and temporal variability in water clarity data. We have developed automated procedures using Landsat imagery to estimate total suspended sediments (TSS), turbidity (TURB) in nephlometric turbidity units (NTU) and Secchi disc transparency (SDT) in 34 shallow lakes in the Waikato region, New Zealand, over a 10-year time span. Fifty-three Landsat 7 Enhanced Thematic Mapper Plus images captured between January 2000 and March 2009 were used for the analysis, six of which were captured within 24 h of physical in situ measurements for each of 10 shallow lakes. This gave 32-36 usable data points for the regressions between surface reflectance signatures and in situ measurements, which yielded r (2) values ranging from 0.67 to 0.94 for the three water clarity variables. Using these regressions, a series of Arc Macro Language scripts were developed to automate image preparation and water clarity analysis. Minimum and maximum in situ measurements corresponding to the six images were 2 and 344 mg/L for TSS, 75 and 275 NTU for TURB, and 0.05 and 3.04 m for SDT. Remotely sensed water clarity estimates showed good agreement with temporal patterns and trends in monitored lakes and we have extended water clarity datasets to previously unmonitored lakes. High spatial variability of TSS and water clarity within some lakes was apparent, highlighting the importance of localised inputs and processes affecting lake clarity. Moreover, remote sensing can give a whole lake view of water quality, which is very difficult to achieve by in situ point measurements.


Assuntos
Lagos/química , Qualidade da Água , Monitoramento Ambiental/métodos , Nova Zelândia , Imagens de Satélites , Astronave
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...