Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 89(7): e202400031, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38436519

RESUMO

1- and 2-Tetrazolylacetonitrile (1- and 2-TAN) have been synthesized by the reaction of chloroacetonitrile with 1H-tetrazole under basic conditions. They further were reacted with sodium azide in the presence of zinc(II) chloride to form 5-((1H-tetrazol-1-yl)methyl)-1H-tetrazole (1-HTMT) and 5-((2H-tetrazol-2-yl)methyl)-1H-tetrazole (2-HTMT). The nitrogen-rich compounds have been applied as ligands for Energetic Coordination Compounds (ECCs) and show interesting coordinative behavior due to different bridging modes. The structural variability of the compounds has been proved by low-temperature X-ray analysis. The ECCs were analyzed for their sensitivities to provide information about the safety of handling and their capability to serve as primary explosives in detonator setups to replace the commonly used lead styphnate and azide. All colored ECCs were evaluated for their ignitability by laser initiation in translucent polycarbonate primer caps. In addition, the spin-crossover characteristics of [Fe(1-TAN)6](ClO4)2 were highlighted by the measurement of the temperature-dependent susceptibility curve.

2.
Chemistry ; 30(1): e202303021, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37843881

RESUMO

Numerous nitramine bridged compounds which show promising combinations of properties have already been identified in the area of energetic materials. In this work, four new nitrazapropane bridged tetrazoles, as well as four new trinitrazaheptane tetrazoles and three oxapropane bridged tetrazoles were synthesized and fully characterized. These new compounds can all be synthesized by a simple, one-step synthesis using Finkelstein conditions. All of these new energetic materials were characterized using NMR spectroscopy, single crystal X-ray diffraction, vibrational analysis and elemental analysis. The thermal behaviour of these compounds was studied by differential thermal analysis (DTA) and partly by thermogravimetric analysis (TGA). The BAM standard method was used to determine the sensitivities towards impact (IS) and friction (FS). The enthalpies of formation were calculated at the CBS-4M level, and the energetic performances were calculated using the EXPLO5 (V6.06.01) computer code. The properties of the new compounds were compared to each other as well as to the known energetic material RDX. Moreover, the iron(II) and copper(II) perchlorate complexes with 1,3-bis-1,1-tetrazolylnitrazapropane as ligand were prepared and investigated.

3.
Molecules ; 28(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764265

RESUMO

Desirable advancements in the field of explosive materials include the development of novel melt-castable compounds with melting points ranging from 80 to 110 °C. This is particularly important due to the limited performance and high toxicity associated with TNT (trinitrotoluene). In this study, a series of innovative melt-castable explosives featuring nitratoalkyl and azidoalkyl functionalities attached to the 3-nitro-, 4-nitro-, 3,4-dinitropyrazole, or 3-azido-4-nitropyrazole scaffold are introduced. These compounds were synthesized using straightforward methods and thoroughly characterized using various analytical techniques, including single-crystal X-ray diffraction, IR spectroscopy, multinuclear nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, elemental analysis, and DTA. Furthermore, the energetic properties such as (theoretical) performance data, sensitivities, and compatibilities of the compounds were evaluated and compared among the different structures.

4.
Org Lett ; 25(32): 5974-5977, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37539977

RESUMO

A [3+2]-cycloaddition toward bishydroxymethyl-1,2,3-triazole makes the title compound available through selective nitration. The obtained sensitive 2-nitrotriazole was shown to have a high density of 1.764 g cm-3 and a detonation velocity of 8590 m s-1. It can also be classified as an oxidizer with an oxygen balance toward CO of 12%. Further representatives of this rare class of 2-nitro-1,2,3-triazoles were synthesized. One- and two-dimensional 15N NMR spectroscopy, crystal structure, and elemental analysis were performed.

5.
Inorg Chem ; 62(4): 1488-1507, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36633927

RESUMO

Energetic coordination compounds (ECCs) show promising properties to be used as potential substitutes for highly toxic lead-containing primary explosives. The concept is to combine the three building blocks: (i) ligand, (ii) transition metal, and (iii) anion, acting as (i) fuel, (ii) matrix, and (iii) oxidizer (e.g., ClO4-, NO3-, ClO3-) or energetic component (e.g., DN-, N3-, picrate, styphnate, trinitrophloroglucinate). By variation of the ligands, the complexes' properties can be adjusted toward their desired performance and sensitivities. In the present study, 1-vinyl-5H-tetrazole (1-VTZ, 1) and 1-allyl-5H-tetrazole (1-ATZ, 2) were used as nitrogen-rich endothermic ligands to form 3d metal (Mn2+, Fe2+, Cu2+, Zn2+, Co2+, Ni2+)-based ECCs. The influence of the introduction of an unsaturated C-C bond (1-ETZ vs 1-VTZ and 1-PTZ vs 1-ATZ) on the performance and sensitivity of the complexes is discussed, as is the lengthening of the alkenyl chain (1-VTZ vs 1-ATZ). For further insights, the novel complexes were compared to literature-known complexes based on N1-substituted C2- and C3-derived tetrazole ligands, respectively. The ligand 1-VTZ (1) was prepared by elimination of hydrogen chloride from 1-(2-chloroethyl)-5H-tetrazole in methanolic KOH solution. 1-ATZ (2) was obtained by a heterocyclization reaction of allylamine with triethyl orthoformate and sodium azide in an acetic acid medium. All compounds were intensively characterized with analytical methods such as XRD, IR, EA, DTA, TGA, and sensitivity measurements (IS and FS). The energetic performances were visibly evaluated in fast heating experiments. Furthermore, PETN initiation and laser ignition experiments were carried out for promising ECCs.

6.
Chemistry ; 29(22): e202204013, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36691978

RESUMO

In the search for high-performance and environmentally friendly energetic materials, the derivatization of known materials is an often-applied concept to fulfill modern-day demands. Surprisingly, the long know pentaerythritol tetranitrate (PETN) has only been derivatized to a limited extent. PETN shows a brought application in energetic materials or pharmaceutics. In this work, the PETN backbone is modified by introducing nitramine, ionic nitramine, amine, ionic amine and tetrazole functionalities. The obtained and structurally similar compounds allow good comparability and insights into functional group effects on sensitivity, thermal behavior and performance. The functionalizations result in melting points in the range of 64 to 126 °C. Some compounds are therefore potential candidates to replace toxic TNT.

7.
Inorg Chem ; 61(43): 17212-17225, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36245215

RESUMO

For the first time, the highly sensitive 1-(nitratomethyl)-5H-tetrazole (1-NAMT) was synthesized, representing the shortest possible 1-(nitratoalkyl)-5H-tetrazole with a combined nitrogen and oxygen content of 81.4%. Compared to its related ethyl derivative, 1-(nitratoethyl)-5H-tetrazole, it exhibits improved oxygen balance, resulting in higher detonation parameters. 1-NAMT was thoroughly analyzed by single-crystal diffraction experiments accompanied by elemental analysis, IR spectroscopy, and multinuclear (1H, 13C, and 14N) NMR measurements. The thermal behavior of 1-NAMT was analyzed by differential thermal analysis supported by thermogravimetric analysis. Furthermore, energetic coordination compounds (ECCs) of Cu with different inorganic (e.g., nitrate, chlorate, and perchlorate) and nitroaromatic anions (e.g., picrate and styphnate) were synthesized and thoroughly analyzed. It is shown that the formation of ECCs with nitroaromatic anions (Tdec ∼ 180 °C) is a suitable strategy to improve the rather low thermal stability of 1-NAMT (125 °C).

8.
Dalton Trans ; 51(31): 11806-11813, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35861528

RESUMO

1,5-Diaminotetrazole is one of the most prominent high-nitrogen tetrazole compounds described in the literature. Interestingly the isomer 2,5-diaminotetrazole is nearly undescribed due to its challenging synthetic routes. 2,5-Diaminotetrazol (1) was successfully synthesized via amination of 5-aminotetrazole followed by various purification steps to separate it from isomeric 1,5-diaminotetrazole. In addition to the extensive characterization of 2,5-DAT further derivates by protonation, methylation and amination of the tetrazole ring were synthesized and characterized. The resulting tri-functionalized, ionic tetrazolium derivatives were combined with energetic anions (nitrate, perchlorate, azide, 5,5'-bistetrazole-1,1'-diolate (BTO2-)) to adjust and tune the properties of each compound. All compounds were intensively characterized including IR and multinuclear NMR spectroscopy, thermal analysis through DTA, X-ray diffraction and sensitivity testing. The purity was verified by CHNO elemental analysis and the energetic properties were calculated using the EXPLO5 code and the calculated enthalpy of formation (CBS-4M).

9.
Chempluschem ; 87(9): e202200186, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862933

RESUMO

Azide and nitrimino functions are among the most energetic substituents that can be introduced to the skeleton to enhance the energetic properties of a compound. In this study, we report the successful synthesis of a compound that combines both, azide and nitrimino substituents directly attached to one tetrazole scaffold. 1-Nitrimino-5-azidotetrazole is prepared by nitration of 1-amino-5-azidotetrazole. Subsequent salination with ammonia and guanidinium carbonate yields two highly energetic derivatives. All energetic compounds, as well as the intermediate steps of an alternatively developed synthesis strategy, were analysed and characterized in detail. In addition to multinuclear NMR and IR spectroscopy, crystal structures of all key compounds were measured. The sensitivities (friction, impact, electrostatic discharge and thermal) were determined accordingly. In addition, the detonation parameters of all energetic substances were calculated with the EXPLO5 code, which was fed with the enthalpy of formation (atomization method based on CBS-4M) and the crystallographic densities.


Assuntos
Azidas , Tetrazóis , Cristalografia por Raios X , Tetrazóis/química , Termodinâmica
10.
Chemistry ; 28(38): e202200492, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35502815

RESUMO

Highly energetic 1-(azidomethyl)-5H-tetrazole (AzMT, 3) has been synthesized and characterized. This completes the series of 1-(azidoalkyl)-5H-tetrazoles represented by 1-(azidoethyl)-5H-tetrazole (AET) and 1-(azidopropyl)-5H-tetrazole (APT). AzMT was thoroughly analyzed by single-crystal X-ray diffraction experiments, elemental analysis, IR spectroscopy and multinuclear (1 H, 13 C, 14 N, 15 N) NMR measurements. Several energetic coordination compounds (ECCs) of 3d metals (Mn, Fe, Cu, Zn) and silver in combination with anions such as (per)chlorate, mono- and dihydroxy-trinitrophenolate were prepared, giving insight into the coordination behavior of AzMT as a ligand. The synthesized ECCs were also analyzed by X-ray diffraction experiments, elemental analysis, and IR spectroscopy. Differential thermal analysis for all compounds was conducted, and the sensitivity towards external stimuli (impact, friction, and ESD) was measured. Due to the high enthalpy of formation of AzMT (+654.5 kJ mol-1 ), some of the resulting coordination compounds are extremely sensitive, yet are able to undergo deflagration-to-detonation transition (DDT) and initiate pentaerythritol tetranitrate (PETN). Therefore, they are to be ranked as primary explosives.

11.
Chemistry ; 28(36): e202200772, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35416343

RESUMO

5-Azido and 5-nitraminotetrazole backbones are established heterocyclic motifs in the research field of energetic materials synthesis. Despite the high energy content of the compounds, the problem with many derivatives is that their sensitivities are far too high. Functionalization of one of the ring nitrogen atoms is the aim of this study to adjust the sensitivity by inserting nitratoethyl, azidoethyl and methyl groups. In this context, derivatives of 2-(2-azidoethyl)-5-nitraminotetrazoles (2, 2 a-2 d), as well as 1-nitrato and 1-azidoethyl substituted 5-azidotetrazole (7 and 10) and the methylation products of 5-azidotetrazole (5-azido-1-methyl-tetrazole, 11 and 5-azido-2-methyl-tetrazole, 12) were prepared. The obtained nitrogen-rich compounds were extensively characterized through multinuclear NMR spectroscopy and IR spectroscopy. The structural confinement was checked by X-ray diffraction experiments. The pure samples (verified by elemental analysis) were investigated regarding their behavior toward friction, impact (BAM methods) and electrostatic discharge as well as heating (DTA and DSC). For all metal-free compounds the detonation properties were computed with the EXPLO5 code using their density and heat of formation, calculated based on CBS-4 M level of theory.

12.
Dalton Trans ; 51(15): 5788-5791, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35355028

RESUMO

For an investigation of the deuterium effect of N-deuterated compounds on the structural and thermal behavior, 1,1-diamino-2,2-dinitroethylene (FOX-7) was deuterated by deprotonation in heavy water and subsequent acidification with D2SO4. The status of deuteration progress was monitored by infrared spectra analysis and the deuteration level was determined via1H q-NMR. The properties of FOX-7-D4 were studied by single crystal X-ray diffraction and differential thermal analysis. In addition, the activation energy of thermal decomposition was determined, and the heat of formation and zero-point energy were calculated.

13.
J Am Chem Soc ; 144(14): 6143-6147, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35358389

RESUMO

2,2'-Azobis(5-azidotetrazole) (C2N16, 3), a highly energetic nitrogen-rich binary CN compound was obtained in a three-step synthesis through the formation of 5-azidotetrazole (1), subsequent amination using O-tosylhydroxylamine to give 2-amino-5-azidotetrazole (2), and oxidative azo coupling of 2 using tBuOCl as an oxidant in MeCN. A nitrogen:carbon ratio of 8:1, eight nitrogen atoms in a row, and a nitrogen content of over 90% was unknown for a binary heterocyclic compound until now. The successful isolation was confirmed through X-ray diffraction as well as by vibrational and 13C NMR spectroscopy. C2N16 can explode instantly and shows mechanical sensitivities far higher than quantitatively measurable. Nevertheless, it features interesting energetic performances, which were calculated using different quantum-chemical methods.


Assuntos
Nitrogênio , Aminação , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Nitrogênio/química , Difração de Raios X
14.
Org Lett ; 24(8): 1747-1751, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35200031

RESUMO

1,1'-Diamino-5,5'-bistetrazole (C2H4N10), a highly nitrogen-containing compound with promising energetic characteristics, is available through a classic organic reaction protocol applied on an inorganic azole system. This is the only Krapcho reaction on a carbamate system described in the literature so far. 1,1'-Diamino-5,5'-bistetrazole was extensively characterized through multinuclear spectroscopy, mass spectrometry, thermal analysis, and X-ray diffraction. The sensitivity values were measured, and detonation values were calculated. Its capability to initiate pentaerythritol tetranitrate (PETN) was successfully demonstrated.

15.
Dalton Trans ; 50(39): 13656-13660, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34586115

RESUMO

N-Hydroxymethylation of heterocyclic compounds offers a promising starting procedure to ultimately introduce nitratomethyl- as well as azidomethyl-moieties. Applied to 5,5'-bistetrazole, the resulting 2,2'-di(azidomethyl)bistetrazole (3) and 2,2'-di(nitratomethyl)bistetrazole (4) are high-performing melt-castable energetic materials. Sensitivities were predicted by Hirshfeld analysis and explored in detail by experimental analysis. Because of their increased values towards mechanical stimuli and a short deflagration to detonation transition (DDT), the diazidomethyl derivative especially shows promise as a new melt-castable primary explosive.

16.
Chem Asian J ; 16(19): 3001-3012, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34411440

RESUMO

For the first time, an adequate selective synthesis, circumventing the formation of 2-hydroxy-5H-tetrazole, of 1-hydroxy-5H-tetrazole (HTO), as well as the synthesis of bis(1-hydroxytetrazol-5-yl)triazene (H3 T) are reported. Several salts thereof were synthesized and characterized which resulted in the formation of new primary and secondary explosives containing the 1-oxidotetrazolate unit. Molecular structures are characterized by single-crystal X-ray diffraction, 1 H and 13 C NMR, IR, and elemental analysis. Calculation of the detonation performance using the Explo5 code confirmed the energetic properties of 1-hydroxy-5H-tetrazole. The detonation properties can be adjusted to the requirements for those of a secondary explosive by forming the hydroxylammonium (6) or hydrazinium (7) salts, or to meet the requirements of a primary explosive by forming the silver salt 4, which shows a fast DDT on contact with a flame. The sensitivities of all compounds towards external stimuli such as impact, friction, and electrostatic discharge were measured.

17.
Inorg Chem ; 60(15): 10909-10922, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34292708

RESUMO

In recent years, development of new energetic compounds and formulations, suitable for ignition with relatively low-power lasers, is a highly active and competitive field of research. The main goal of these efforts is focused on achieving and providing much safer solutions for various detonator and initiator systems. In this work, we prepared, characterized, and studied thermal and ignition properties of a new laser-ignitable compound, based on the 5,6-bis(ethylnitroamino)-N'2,N'3-dihydroxypyrazine-2,3-bis(carboximidamide) (DS3) proligand. This new energetic proligand was prepared in three steps, starting with 5,6-bis(ethylamino)-pyrazine-2,3-dicarbonitrile. Crystallography studies of the DS3-derived Cu(II) complex (DS4) revealed a unique stacked antenna-type structure of the latter compound. DS4 has an exothermal temperature of 154.5 °C and was calculated to exhibit a velocity of detonation of 6.36 km·s-1 and a detonation pressure of 15.21 GPa. DS4 showed properties of a secondary explosive, having sensitivity to impact, friction, and electrostatic discharge of 8 J, 360 N, and 12 mJ, respectively. In order to study the mechanism of ignition by a laser (using a diode laser, 915 nm), we conducted a set of experiments that enabled us to characterize a photothermal ignition mechanism. Furthermore, we found that a single pulse, with a time duration of 1 ms and with a total energy of 4.6 mJ, was sufficient for achieving a consistent and full ignition of DS4. Dual-pulse experiments, with variable time intervals between the laser pulses, showed that DS4 undergoes ignition via a photothermal mechanism. Finally, calculating the chemical mechanism of the formation of the complex DS4 and modeling its anhydrous and hydrated crystal structures (density functional theory calculations using Gaussian and HASEM software) allowed us to pinpoint a more precise location of water molecules in experimental crystallographic data. These results suggest that DS4 has potential for further development to a higher technology readiness level and for integration into small-size safe detonator systems as for many civil, aerospace, and defense applications.

18.
Dalton Trans ; 50(31): 10811-10825, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34291271

RESUMO

1- and 2-Nitratoethyl-5H-tetrazole (1-NET and 2-NET) were prepared through nitration of the respective alkyl alcohol using 100% nitric acid. A mixture of 1- and 2-hydroxyethyl-5H-tetrazole was obtained after alkylation of 1,5H-tetrazole. Also, a one-pot synthesis of 1-hydroxyethyl-5H-tetrazole was developed enabling the selective preparation of 1-NET. Both organic nitrates were characterized by 1H, 13C, and 1H-15N HMBC NMR spectroscopy. In addition, calculations using the Hirshfeld method and the EXPLO5 code were performed. Principally, 20 energetic coordination compounds involving the d-metals Mn, Cu, Zn, and Ag, each structurally characterized by low temperature single crystal X-ray diffraction, were prepared based on 1-NET and 2-NET. Of these complexes, 18 were obtained as pure bulk materials, and therefore, characterized for impact, friction, and ball drop impact sensitivity, as well as electrostatic discharge and thermal stability using differential thermal analysis. Hot plate and hot needle tests were performed mostly showing strong deflagrations making the complexes candidates for green combustion catalysts. Furthermore, successful PETN initiation experiments were carried out for several complexes and all ECCs were investigated by laser ignition experiments.

19.
Chempluschem ; 86(6): 870-874, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34114377

RESUMO

As pure compounds, small carbonyl azides enjoy a bad reputation, due to the high explosive sensitivity and instability they demonstrate. Consequently, most reported examples have only been poorly characterized. The compounds oxalyl diazide (1), carbamoyl azide (2), as well as N,N'-bis(azidocarbonyl)hydrazine (3) were obtained by performing a diazotation reaction on the corresponding hydrazo precursor. Carbamoyl azide (2) could also be obtained from oxalyl diazide via Curtius rearrangement to the reactive isocyanate, followed by reaction with water. Further, different trapping reactions of the isocyanate with hydroxyl (methanol, oxetan-3-ol) and amino (2-amino-5H-tetrazole) functions are described. All products were extensively analyzed using IR, EA, DTA and multinuclear NMR spectroscopy, and the crystal structures elucidated using single crystal X-ray diffraction. In addition, the sensitivities toward friction and impact were determined and the energetic performances of the carbonyl azides were calculated using the EXPLO5 code.

20.
Chemistry ; 27(35): 9112-9123, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33899986

RESUMO

Dinitraminic acid (HN(NO2 )2 , HDN) was prepared by ion exchange chromatography and acid-base reaction with basic copper(II) carbonate allowed the in situ preparation of copper(II) dinitramide, which was reacted with twelve nitrogen-rich ligands, for example, 4-amino-1,2,4-triazole, 1-methyl-5H-tetrazole, di(5H-tetrazolyl)-methane/-ethane/-propane/-butane. Nine of the complexes were investigated by low-temperature X-ray diffraction. In addition, all compounds were investigated by infrared spectroscopy (IR), differential thermal analysis (DTA), elemental analysis (EA) and thermogravimetric analysis (TGA) for selected compounds. Furthermore, investigations of the materials were carried out regarding their sensitivity toward impact (IS), friction (FS), ball drop impact (BDIS) and electrostatic discharge (ESD). In addition, hot plate and hot needle tests were performed. Complex [Cu(AMT)4 (H2 O)](DN)2 , based on 1-amino-5-methyltetrazole (AMT), is most outstanding for its detonative behavior and thus also capable of initiating PETN in classical initiation experiments. Laser ignition experiments at a wavelength of 915 nm were performed for all substances and solid-state UV-Vis spectra were recorded to apprehend the ignition mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...