Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 10(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725340

RESUMO

Temporal lobe epilepsy (TLE) is notoriously pharmacoresistant, and identifying novel therapeutic targets for controlling seizures is crucial. Long-range inhibitory neuronal nitric oxide synthase-expressing cells (LINCs), a population of hippocampal neurons, were recently identified as a unique source of widespread inhibition in CA1, able to elicit both GABAA-mediated and GABAB-mediated postsynaptic inhibition. We therefore hypothesized that LINCs could be an effective target for seizure control. LINCs were optogenetically activated for on-demand seizure intervention in the intrahippocampal kainate (KA) mouse model of chronic TLE. Unexpectedly, LINC activation at 1 month post-KA did not substantially reduce seizure duration in either male or female mice. We tested two different sets of stimulation parameters, both previously found to be effective with on-demand optogenetic approaches, but neither was successful. Quantification of LINCs following intervention revealed a substantial reduction of LINC numbers compared with saline-injected controls. We also observed a decreased number of LINCs when the site of initial insult (i.e., KA injection) was moved to the amygdala [basolateral amygdala (BLA)-KA], and correspondingly, no effect of light delivery on BLA-KA seizures. This indicates that LINCs may be a vulnerable population in TLE, regardless of the site of initial insult. To determine whether long-term circuitry changes could influence outcomes, we continued testing once a month for up to 6 months post-KA. However, at no time point did LINC activation provide meaningful seizure suppression. Altogether, our results suggest that LINCs are not a promising target for seizure inhibition in TLE.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Masculino , Camundongos , Feminino , Animais , Convulsões/induzido quimicamente , Hipocampo , Ácido Caínico/toxicidade , Modelos Animais de Doenças , Ácido gama-Aminobutírico/farmacologia
2.
Brain ; 146(1): 91-108, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35136942

RESUMO

Additional treatment options for temporal lobe epilepsy are needed, and potential interventions targeting the cerebellum are of interest. Previous animal work has shown strong inhibition of hippocampal seizures through on-demand optogenetic manipulation of the cerebellum. However, decades of work examining electrical stimulation-a more immediately translatable approach-targeting the cerebellum has produced very mixed results. We were therefore interested in exploring the impact that stimulation parameters may have on seizure outcomes. Using a mouse model of temporal lobe epilepsy, we conducted on-demand electrical stimulation of the cerebellar cortex, and varied stimulation charge, frequency and pulse width, resulting in over 1000 different potential combinations of settings. To explore this parameter space in an efficient, data-driven, manner, we utilized Bayesian optimization with Gaussian process regression, implemented in MATLAB with an Expected Improvement Plus acquisition function. We examined three different fitting conditions and two different electrode orientations. Following the optimization process, we conducted additional on-demand experiments to test the effectiveness of selected settings. Regardless of experimental setup, we found that Bayesian optimization allowed identification of effective intervention settings. Additionally, generally similar optimal settings were identified across animals, suggesting that personalized optimization may not always be necessary. While optimal settings were effective, stimulation with settings predicted from the Gaussian process regression to be ineffective failed to provide seizure control. Taken together, our results provide a blueprint for exploration of a large parameter space for seizure control and illustrate that robust inhibition of seizures can be achieved with electrical stimulation of the cerebellum, but only if the correct stimulation parameters are used.


Assuntos
Estimulação Encefálica Profunda , Epilepsia do Lobo Temporal , Animais , Estimulação Encefálica Profunda/métodos , Teorema de Bayes , Estimulação Elétrica , Convulsões/terapia , Cerebelo
3.
Addict Biol ; 28(1): e13247, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577719

RESUMO

Chronic opioid exposure causes structural and functional changes in brain circuits, which may contribute to opioid use disorders. Synaptic cell-adhesion molecules are prime candidates for mediating this opioid-evoked plasticity. Neuroligin-3 (NL3) is an X-linked postsynaptic adhesion protein that shapes synaptic function at multiple sites in the mesolimbic dopamine system. We therefore studied how genetic knockout of NL3 alters responses to chronic morphine in male mice. Constitutive NL3 knockout caused a persistent reduction in psychomotor sensitization after chronic morphine exposure and change in the topography of locomotor stimulation produced by morphine. This latter change was recapitulated by conditional genetic deletion of NL3 from cells expressing the Drd1 dopamine receptor, whereas reduced psychomotor sensitization was recapitulated by conditional genetic deletion from dopamine neurons. Without NL3 expression, dopamine neurons in the ventral tegmental area exhibited diminished activation following chronic morphine exposure, by measuring in vivo calcium signals with fibre photometry. This altered pattern of dopamine neuron activity may be driven by aberrant forms of opioid-evoked synaptic plasticity in the absence of NL3: dopamine neurons lacking NL3 showed weaker synaptic inhibition at baseline, which was subsequently strengthened after chronic morphine. In total, our study highlights neurobiological adaptations in dopamine neurons of the ventral tegmental area that correspond with increased behavioural sensitivity to opioids and further suggests that NL3 expression by dopamine neurons provides a molecular substrate for opioid-evoked adaptations in brain function and behaviour.


Assuntos
Dopamina , Morfina , Camundongos , Masculino , Animais , Morfina/farmacologia , Dopamina/fisiologia , Analgésicos Opioides , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios Dopaminérgicos/metabolismo , Área Tegmentar Ventral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...