Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(21): 34452-34464, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809235

RESUMO

In this work we present a novel way to manipulate the effect of transverse mode instability by inducing traveling waves in a high-power fiber system. What sets this technique apart is the fact that it allows controlling the direction of the modal energy flow, for the first time to the best of our knowledge. Thus, using the method proposed in this work it will be possible to transfer energy from the higher-order mode into the fundamental mode of the fiber, which mitigates the effect of transverse mode instability, but also to transfer energy from the fundamental mode into the higher-order mode. Our simulations indicate that this approach will work both below and above the threshold of transverse mode instability. In fact, our model reveals that it can be used to force a nearly pure fundamental mode output in the fiber laser system almost independently of the input coupling conditions. In this context, this technique represents the first attempt to exploit the physics behind the effect of transverse mode instability to increase the performance of fiber laser systems.

2.
Opt Express ; 27(3): 2170-2183, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732258

RESUMO

In this paper, we investigate laser emission at 3.4µm in heavily-erbium-doped fluoride fibers using dual-wavelength pumping. To this extent, a monolithic 7 mol% erbium-doped fluoride fiber laser bounded by intracore fiber Bragg gratings at 3.42 µm is used to demonstrate a record efficiency of 38.6 % with respect to the 1976 nm pump. Through numerical modeling, we show that similar laser performances at 3.4 µm can be expected in fluoride fibers with erbium concentrations ranging between 1 - 7 mol%, although power scaling should rely on lightly-doped fibers to mitigate the heat load. Moreover, this work studies transverse mode-beating of the 1976 nm core pump and its role in the generation of a periodic luminescent grating and in the trapping of excitation in the metastable energy levels of the erbium system. Finally, we also report on the bistability of the 3.42 µm output power of the 7 mol% erbium-doped fluoride fiber laser.

3.
Opt Express ; 26(15): 19489-19497, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30114120

RESUMO

A phase shift between the modal interference pattern and the thermally-induced refractive index grating is most likely the ultimate trigger for the damaging effect of transverse mode instabilities (TMI) in high-power fiber laser systems. By using comprehensive simulations, the creation and evolution of a thermally-induced phase shift is explained and illustrated in detail. It is shown that such a phase shift can be induced by a variation of the pump power. The gained knowledge about the generation and evolution of the phase shift will allow for the development of new mitigation strategies for TMI.

4.
Opt Express ; 26(8): 10691-10704, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29716002

RESUMO

A new way of stabilizing the output beam of a fiber laser system operating above the mode instability threshold is described and the first proof-of-principle experimental results are presented. This technique, which relies on a modulation of the pump power, works by washing the thermally-induced refractive index grating out, which weakens the coupling efficiency between transverse modes. One of the main advantages of this simple, yet powerful, approach is that it can be easily incorporated in already existing fiber laser systems since it does not require any additional optical elements. Using this beam stabilization strategy, a significant pointing stability and beam quality improvement has been demonstrated up to an average power of ~600W, which is a factor of 2 above the mode instability threshold.

5.
Light Sci Appl ; 7: 59, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30863543

RESUMO

Thermally induced refractive index gratings in Yb-doped fibers lead to transverse mode instability (TMI) above an average power threshold, which represents a severe problem for many applications. To obtain a deeper understanding of TMI, the evolution of the strength of the thermally induced refractive index grating with the average output power in a fiber amplifier is experimentally investigated for the first time. This investigation is performed by introducing a phase shift between the refractive index grating and modal interference pattern, which is obtained by applying a pump power variation to the fiber amplifier. It is demonstrated that the refractive index grating is sufficiently strong to enable modal energy coupling at powers that are significantly below the TMI threshold if the induced phase shift is sufficiently large. The experiments indicate that at higher powers, the refractive index grating becomes more sensitive to such phase shifts, which will ultimately trigger TMI. Furthermore, the experimental results demonstrate beam cleaning above the TMI threshold via the introduction of a positive phase shift. This finding paves the way for the development of a new class of mitigation strategies for TMI that are based on controlling the phase shift between the thermally induced refractive index grating and modal interference pattern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...