Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 96(3): 467-77, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15994841

RESUMO

BACKGROUNDS AND AIMS: Echinacea angustifolia is a widespread species distributed throughout the Great Plains region of North America. Genetic differentiation among populations was investigated along a 1500 km north-south climatic gradient in North America, a region with no major geographical barriers. The objective of the study was to determine if genetic differentiation of populations could be explained by an isolation-by-distance model or by associations with climatic parameters known to affect plant growth and survival. METHODS: Historical climatic data were used to define the nature of the climatic gradient and AFLP markers were used to establish patterns of population genetic differentiation among ten Echinacea populations collected from North Dakota to Oklahoma. A total of 1290 fragments were scored using six EcoRI/MseI and three PstI/MseI primer combinations. Assessment of the correlation between climatic, genetic and geographic distances was assessed by Mantel and partial Mantel tests. KEY RESULTS: PstI/MseI combinations produced significantly fewer fragments, but a larger percentage was unique compared with EcoRI/MseI markers. Using estimates of F(ST), populations in Oklahoma and southern Kansas were identified as the most divergent from the other populations. Both the neighbour-joining tree and principal co-ordinate analysis clustered the populations in a north-south spatial orientation. About 60% of the genetic variation was found within populations, 20% among populations and the remaining 20% was partitioned among groups that were defined by the topology of the neighbour-joining tree. Significant support was found for the isolation-by-distance model independent of the effects of annual mean precipitation, but not from annual mean temperature and freeze-free days. CONCLUSIONS: Echinacea angustifolia populations exhibit genetic divergence along a north-south climatic gradient. The data support an isolation-by-distance restriction in gene flow that is independent of annual mean precipitation.


Assuntos
Clima , Echinacea/genética , Variação Genética , Adaptação Fisiológica/genética , DNA de Plantas/análise , DNA de Plantas/genética , Demografia , Genes de Plantas , Filogenia
2.
Genome ; 47(1): 102-11, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15060607

RESUMO

The taxonomy of Echinacea is based on morphological characters and has varied depending on the monographer. The genus consists of either nine species and four varieties or four species and eight varieties. We have used amplified fragment length polymorphisms (AFLP) to assess genetic diversity and phenetic relationships among nine species and three varieties of Echinacea (sensu McGregor). A total of 1086 fragments, of which approximately 90% were polymorphic among Echinacea taxa, were generated from six primer combinations. Nei and Li's genetic distance coefficient and the neighbor-joining algorithm were employed to construct a phenetic tree. Genetic distance results indicate that all Echinacea species are closely related, and the average pairwise distance between populations was approximately three times the intrapopulation distances. The topology of the neighbor-joining tree strongly supports two major clades, one containing Echinacea purpurea, Echinacea sanguinea, and Echinacea simulata and the other containing the remainder of the Echinacea taxa (sensu McGregor). The species composition within the clades differs between our AFLP data and the morphometric treatment offered by Binns and colleagues. We also discuss the suitability of AFLP in determining phylogenetic relationships.


Assuntos
Echinacea/genética , Variação Genética , Modelos Genéticos , Análise por Conglomerados , Echinacea/classificação , Eletroforese em Gel de Poliacrilamida , Marcadores Genéticos , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Análise de Componente Principal
3.
Plant Physiol ; 113(1): 13-20, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12223589

RESUMO

Completion of germination (radicle emergence) is an all-or-none developmental event for an individual seed. Variation in germination timing among seeds in a population therefore reflects variation among seeds in the rates or extents of physiological or biochemical processes prior to radicle emergence. For tomato (Lycopersicon esculentum Mill.) seeds, correlative evidence suggests that endo-[beta]-mannanase activity weakens the endosperm cap tissue opposite the radicle tip to permit radicle emergence. To test whether endo-[beta]-mannanase activity is causally related to germination rates, we have developed a sensitive assay suitable for use with individual radicle tips or endosperm caps. We show that endo-[beta]-mannanase activity varies at least 100-fold and often more than 1000-fold among individual inbred tomato seeds prior to radicle emergence. Other sources of variation (tissue size and experimental error) were evaluated and cannot account for this range of activity. Endo-[beta]-mannanase activity was generally 10-fold greater in leachates from endosperm caps than from radicle tips. Release of reducing sugars from individual endosperm caps also varied over a considerable (9-fold) range. These extreme biochemical differences among individual tomato seeds prior to radicle emergence indicate that results obtained from bulk samples could be misleading if it is assumed that all seeds exhibit the "average" behavior.

4.
Plant Physiol ; 113(1): 21-29, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12223590

RESUMO

Endo-[beta]-mannanase is hypothesized to be a rate-limiting enzyme in endosperm weakening, which is a prerequisite for radicle emergence from tomato (Lycopersicon esculentum Mill.) seeds. Using a sensitive, single-seed assay, we have measured mannanase activity diffusing from excised tomato endosperm caps following treatments that alter the rate or percentage of radicle emergence. Most striking was the 100- to more than 10,000-fold range of mannanase activity detected among individual seeds of highly inbred tomato lines, which would not be detected in pooled samples. In some cases a threshold-type relationship between mannanase activity and radicle emergence was observed. However, when radicle emergence was delayed or prevented by osmoticum or abscisic acid, the initial increase in mannanase activity was unaffected or even enhanced. Partially dormant seed lots displayed a bimodal distribution of activity, with low activity apparently associated with dormant seeds in the population. Gibberellin- and abscisic acid-deficient mutant seeds exhibited a wide range of mannanase activity, consistent with their variation in hormonal sensitivity. Although the presence of mannanase activity in the endosperm cap is consistently associated with radicle emergence, it is not the sole or limiting factor under all conditions.

5.
Mol Gen Genet ; 252(1-2): 184-94, 1996 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-8804392

RESUMO

Site-selected insertion (SSI) is a PCR-based technique which uses primers located within the transposon and a target gene for detection of transposon insertions into cloned genes. We screened tomato plants bearing single or multiple copies of maize Ac or Ds transposable elements for somatic insertions at one close-range target and two long-range targets. Eight close-range Ds insertions near the right border of the T-DNA were recovered. Sequence analysis showed a precise junction between the transposon and the target for all insertions. Two insertions in separate plants occurred at the same site, but others appeared dispersed in the region of the right T-DNA border with no target specificity. However, insertions showed a preference for one orientation of the transposon. Use of plants with multiple Ac (HiAc) or Ds (HiDs) elements allowed detection of somatic insertions at two single-copy genes, PG (polygalacturonase) and DFR (dihydroflavonol 4-reductase). Certain HiDs plants showed much higher rates of insertion into PG than others. Insertions in PG and DFR were found throughout the gene regions monitored and, with the exception of one insertion in PG, the junctions between transposon and target were exact. SSI analysis of progeny from the HiDs parents revealed that in some cases the tendency to incur high levels of somatic insertions in PG was inherited. Inheritance of this character is an indication that SSI could be used to direct a search for germinal PG insertions in tomato.


Assuntos
Elementos de DNA Transponíveis/genética , Mutagênese Insercional , Solanum lycopersicum/genética , Zea mays/genética , Oxirredutases do Álcool/genética , Sequência de Bases , Southern Blotting , Mapeamento Cromossômico , Clonagem Molecular , Primers do DNA , DNA Bacteriano/genética , Genes de Plantas/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poligalacturonase/genética
6.
Plant Physiol ; 104(2): 431-438, 1994 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12232094

RESUMO

The ability of seeds to withstand desiccation develops during embryogenesis and differs considerably among species. Paddy rice (Oryza sativa L.) grains readily survive dehydration to as low as 2% water content, whereas North American wild rice (Zizania palustris var interior [Fasset] Dore) grains are not tolerant of water contents below 6% and are sensitive to drying and imbibition conditions. During embryogenesis, dehydrin proteins, abscisic acid (ABA), and saccharides are synthesized, and all have been implicated in the development of desiccation tolerance. We examined the accumulation patterns of dehydrin protein, ABA, and soluble saccharides (sucrose and oligosaccharides) of rice embryos and wild rice axes in relation to the development of desiccation tolerance during embryogenesis. Dehydrin protein was detected immunologically with an antibody raised against a conserved dehydrin amino acid sequence. Both rice and wild rice embryos accumulated a 21-kD dehydrin protein during development, and an immunologically related 38-kD protein accumulated similarly in rice. Dehydrin protein synthesis was detected before desiccation tolerance had developed in both rice embryos and wild rice axes. However, the major accumulation of dehydrin occurred after most seeds of both species had become desiccation tolerant. ABA accumulated in wild rice axes to about twice the amount present in rice embryos. There were no obvious relationships between ABA and the temporal expression patterns of dehydrin protein in either rice or wild rice. Wild rice axes accumulated about twice as much sucrose as rice embryos. Oligosaccharides were present at only about one-tenth of the maximum sucrose concentrations in both rice and wild rice. We conclude that the desiccation sensitivity displayed by wild rice grains is not due to an inability to synthesize dehydrin proteins, ABA, or soluble carbohydrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...