Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 23(6): 2499-2508, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27739159

RESUMO

Rising temperatures have begun to shift flowering time, but it is unclear whether phenotypic plasticity can accommodate projected temperature change for this century. Evaluating clines in phenological traits and the extent and variation in plasticity can provide key information on assessing risk of maladaptation and developing strategies to mitigate climate change. In this study, flower phenology was examined in 52 populations of big sagebrush (Artemisia tridentata) growing in three common gardens. Flowering date (anthesis) varied 91 days from late July to late November among gardens. Mixed-effects modeling explained 79% of variation in flowering date, of which 46% could be assigned to plasticity and genetic variation in plasticity and 33% to genetics (conditional R2  = 0.79, marginal R2  = 0.33). Two environmental variables that explained the genetic variation were photoperiod and the onset of spring, the Julian date of accumulating degree-days >5 °C reaching 100. The genetic variation was mapped for contemporary and future climates (decades 2060 and 2090), showing flower date change varies considerably across the landscape. Plasticity was estimated to accommodate, on average, a ±13-day change in flowering date. However, the examination of genetic variation in plasticity suggests that the magnitude of plasticity could be affected by variation in the sensitivity to photoperiod and temperature. In a warmer common garden, lower-latitude populations have greater plasticity (+16 days) compared to higher-latitude populations (+10 days). Mapped climatypes of flowering date for contemporary and future climates illustrate the wide breadth of plasticity and large geographic overlap. Our research highlights the importance of integrating information on genetic variation, phenotypic plasticity and climatic niche modeling to evaluate plant responses and elucidate vulnerabilities to climate change.


Assuntos
Artemisia , Mudança Climática , Flores , Estações do Ano , Artemisia/crescimento & desenvolvimento , Artemisia/fisiologia , Clima , Fenótipo , Reprodução , Temperatura
2.
Am J Bot ; 103(11): 1950-1963, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27803000

RESUMO

PREMISE OF THE STUDY: Land-use change is cited as a primary driver of global biodiversity loss, with myriad consequences for species, populations, and ecosystems. However, few studies have examined its impact on species interactions, particularly pollination. Furthermore, when the effects of land-use change on pollination have been studied, the focus has largely been on species pollinated by diurnal pollinators, namely, bees and butterflies. Here, we focus on Oenothera harringtonii, a night-flowering, disturbance-adapted species that has experienced a range-wide gradient of land-use change. We tested the hypothesis that the negative impacts of land-use change are mitigated by long-distance pollination. METHODS: Our study included both temporal (4 yr) and spatial (19 populations range-wide, and 1, 2, and 5 km from the population center) data, providing a comprehensive understanding of the role of land-use change on pollination biology and reproduction. KEY RESULTS: We first confirmed that O. harringtonii is self-incompatible and reliant on pollinators for reproduction. We then showed that hawkmoths (primarily Hyles lineata) are highly reliable and effective pollinators in both space and time. Unlike other studies, we did not detect an effect of population size, increased isolation, or a reduction in suitable habitat in areas with evidence of land-use change on pollination (visitation, pollen removal and deposition). Furthermore, the proportion of suitable habitat and other fragmentation metrics examined were not associated with population size or density in this plant species. CONCLUSIONS: We conclude that nocturnal pollination of Oenothera harringtonii via hawkmoths is robust to the negative impacts of land-use change.


Assuntos
Manduca/fisiologia , Polinização , Animais , Biodiversidade , Demografia , Ecossistema , Flores/fisiologia , Oenothera/fisiologia , Pólen/fisiologia , Densidade Demográfica , Reprodução
3.
PhytoKeys ; (35): 45-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24843288

RESUMO

Two new species of Eschscholzia are described. Both are found in the deserts of California and one extends outside the state boundary into Arizona. Eschscholzia androuxii Still, sp. nov. is found mainly in and around Joshua Tree National Park in Riverside and San Bernardino counties. Eschscholzia papastillii Still, sp. nov. is found from the northern Mojave south through Joshua Tree National Park to central Imperial County. Both are annuals found in coarse, sandy soil and have yellow flowers typical of desert Eschscholzia. Eschscholzia papastillii has an expanded receptacular rim similar to that of Eschscholzia californica. Eschscholzia androuxii has anthocyanin bands around the stamen filaments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...