Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 42(2): 345-53, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11703659

RESUMO

The Ash1 protein is a daughter cell-specific repressor of HO gene transcription in Saccharomyces cerevisiae. Both ASH1 mRNA and protein are localized to the incipient daughter cell at the end of mitosis; Ash1 then inhibits HO transcription in the daughter cell after cytokinesis. Mother cells, in contrast, contain little or no Ash1 and thus are able to transcribe HO. We show that deletion of PHO85, which encodes a cyclin-dependent protein kinase, causes reduced transcription of HO and that this reduction is dependent on ASH1. In pho85 mutants, Ash1 protein is no longer asymmetrically localized and is present, instead, in both mother and daughter cells. Initially, it appears to be localized properly but then persists as daughter cells mature into mother cells. In contrast, ASH1 mRNA is localized appropriately to daughter cells in pho85 mutants. We observe that Ash1 protein is phosphorylated by Pho85 in vitro and that Ash1 stability increases in a pho85 mutant. These data suggest that phosphorylation of Ash1 by Pho85 governs stability of Ash1 protein.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Divisão Celular , Quinases Ciclina-Dependentes/genética , Regulação Fúngica da Expressão Gênica , Mutação , Fenótipo , Fosforilação , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica
2.
Genes Dev ; 15(18): 2457-69, 2001 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-11562354

RESUMO

Regulation of HO gene expression in the yeast Saccharomyces cerevisiae is intricately orchestrated by an assortment of gene-specific DNA-binding and non-DNA binding regulators. Binding of the early G1 transcription factor Swi5 to the distal URS1 element of the HO promoter initiates a cascade of events through recruitment of the Swi/Snf and SAGA complexes. In late G1, binding of transcription factor SBF to promoter proximal sequences results in the timely expression of HO. In this work we describe an important additional layer of complexity to the current model by identifying a connection between Swi5 and the Mediator/RNA polymerase II holoenzyme complex. We show that Swi5 recruits Mediator to HO by specific interaction with the Gal11 module of the Mediator complex. Importantly, binding of both the Gal11 and Srb4 mediator components to the upstream region of HO is independent of the SBF factor. Swi/Snf is required for Mediator binding, and genetic suppression experiments suggest that Swi/Snf and Mediator act in the same genetic pathway of HO activation. Experiments examining the kinetics of binding show that Mediator binds to HO promoter elements 1.5 kb upstream of the transcription start site in early G1, but this binding occurs without RNA Pol II. RNA Pol II does not bind to HO until late G1, when HO is actively transcribed, and binding occurs exclusively to the TATA region.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Proteínas Fúngicas/fisiologia , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Complexo Mediador , Ligação Proteica , Saccharomyces cerevisiae/genética , TATA Box , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
EMBO J ; 20(13): 3506-17, 2001 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-11432837

RESUMO

Yeast Spt16/Cdc68 and Pob3 form a heterodimer that acts in both DNA replication and transcription. This is supported by studies of new alleles of SPT16 described here. We show that Spt16-Pob3 enhances HO transcription through a mechanism that is affected by chromatin modification, since some of the defects caused by mutations can be suppressed by deleting the histone deacetylase Rpd3. While otherwise conserved among many eukaryotes, Pob3 lacks the HMG1 DNA-binding motif found in similar proteins such as the SSRP1 subunit of human FACT. SPT16 and POB3 display strong genetic interactions with NHP6A/B, which encodes an HMG1 motif, suggesting that these gene products function coordinately in vivo. While Spt16-Pob3 and Nhp6 do not appear to form stable heterotrimers, Nhp6 binds to nucleosomes and these Nhp6-nucleosomes can recruit Spt16-Pob3 to form SPN-nucleosomes. These complexes have altered electrophoretic mobility and a distinct pattern of enhanced sensitivity to DNase I. These results suggest that Spt16-Pob3 and Nhp6 cooperate to function as a novel nucleosome reorganizing factor.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas Nucleares/metabolismo , Nucleossomos/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição , Fatores de Elongação da Transcrição , Alelos , Substituição de Aminoácidos , Antígenos Nucleares , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genótipo , Proteínas HMGN , Proteínas de Grupo de Alta Mobilidade/genética , Histonas/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Proteínas Associadas à Matriz Nuclear , Proteínas Nucleares/genética , Nucleossomos/genética , Fenótipo , Subunidades Proteicas , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Fuso Acromático , Transcrição Gênica
4.
Nucleic Acids Res ; 29(12): E59-9, 2001 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-11410682

RESUMO

We have constructed new yeast vectors for targeted integration of desired sequences at the Saccharomyces cerevisiae HO locus. Insertion at HO has been shown to have no effect on yeast growth, and thus these integrations should be neutral. One vector contains the KanMX selectable marker, and integrants can be selected by resistance to G418. The other vector contains the hisG-URA3-hisG cassette, and integrants can be selected by uracil prototrophy. Subsequent growth on 5-FOA permits identification of colonies where recombination between the hisG tandem repeats has led to loss of the URA3 marker and return to uracil auxotrophy. We also describe several new bacterial polylinker vectors derived from pUC21 (ampicillin resistance) and pUK21 (kanamycin resistance).


Assuntos
DNA Fúngico/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Vetores Genéticos/genética , Recombinação Genética/genética , Saccharomyces cerevisiae/genética , Resistência a Ampicilina , DNA Bacteriano/genética , DNA Fúngico/metabolismo , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Proteínas Fúngicas/genética , Genes Fúngicos/genética , Marcadores Genéticos/genética , Gentamicinas/farmacologia , Resistência a Canamicina , Dados de Sequência Molecular , Ácido Orótico/análogos & derivados , Ácido Orótico/farmacologia , Mapeamento por Restrição , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae , Sequências de Repetição em Tandem/genética
5.
Genes Dev ; 14(21): 2737-44, 2000 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-11069890

RESUMO

Ssn6-Tup1 regulates multiple genes in yeast, providing a paradigm for corepressor functions. Tup1 interacts directly with histones H3 and H4, and mutation of these histones synergistically compromises Ssn6-Tup1-mediated repression. In vitro, Tup1 interacts preferentially with underacetylated isoforms of H3 and H4, suggesting that histone acetylation may modulate Tup1 functions in vivo. Here we report that histone hyperacetylation caused by combined mutations in genes encoding the histone deacetylases (HDACs) Rpd3, Hos1, and Hos2 abolishes Ssn6-Tup1 repression. Unlike HDAC mutations that do not affect repression, this combination of mutations causes concomitant hyperacetylation of both H3 and H4. Strikingly, two of these class I HDACs interact physically with Ssn6-Tup1. These findings suggest that Ssn6-Tup1 actively recruits deacetylase activities to deacetylate adjacent nucleosomes and promote Tup1-histone interactions.


Assuntos
Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/metabolismo , Histonas/metabolismo , Proteínas Nucleares , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Acetilação , Histona Desacetilases/genética , Histonas/química , Nucleossomos/metabolismo , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética
6.
J Biol Chem ; 275(52): 40961-6, 2000 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-11024051

RESUMO

SDS3 (suppressor of defective silencing 3) was originally identified in a screen for mutations that cause increased silencing of a crippled HMR silencer in a rap1 mutant background. In addition, sds3 mutants have phenotypes very similar to those seen in sin3 and rpd3 mutants, suggesting that it functions in the same genetic pathway. In this manuscript we demonstrate that Sds3p is an integral subunit of a previously identified high molecular weight Rpd3p.Sin3p containing yeast histone deacetylase complex. By analyzing an sds3Delta strain we show that, in the absence of Sds3p, Sin3p can be chromatographically separated from Rpd3p, indicating that Sds3p promotes the integrity of the complex. Moreover, the remaining Rpd3p complex in the sds3Delta strain had little or no histone deacetylase activity. Thus, Sds3p plays important roles in the integrity and catalytic activity of the Rpd3p.Sin3p complex.


Assuntos
Proteínas Fúngicas/fisiologia , Inativação Gênica , Histona Desacetilases/metabolismo , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/fisiologia
7.
J Biochem ; 128(4): 665-71, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11011149

RESUMO

An increasing number of actin-related proteins (Arps), which share the basal structure with skeletal actin but possess distinct functions, have been found in a wide variety of organisms. Individual Arps of Saccharomyces cerevisiae were classified into Arps 1-10 based on the relatedness of their sequences and functions, where Arp1 is the most similar to actin, and Arp10 is the least similar. While Arps 1-3 and their orthologs in other organisms are localized exclusively in the cytoplasm, Arp4 (also known as Act3) is localized in the nucleus and is involved in transcriptional regulation. Here we examined the more divergent Arps for possible nuclear functions. We show that Arps 5-9 are localized in the nucleus, but Arp10 is not. The nuclear export signals identified in actin are well conserved in the cytoplasmic Arps, Arps 1-3, but less conserved in the nuclear Arps. Gel filtration chromatography experiments show that the nuclear Arps are larger than monomer in size and thus are present in multi-protein complexes. Since nuclear protein complexes containing Arps are found to be responsible for histone acetylation and chromatin remodeling, it is suggested that most of the divergent Arps are involved in the !transcriptional regulation through chromatin modulation.


Assuntos
Actinas/química , Núcleo Celular/química , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Actinas/genética , Actinas/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Cromatina/metabolismo , Cromatografia em Gel , Citoplasma/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Teste de Complementação Genética , Proteínas de Fluorescência Verde , Proteínas Luminescentes , Substâncias Macromoleculares , Microscopia de Fluorescência , Dados de Sequência Molecular , Peso Molecular , Mutação , Sinais de Localização Nuclear , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Frações Subcelulares/química
8.
Mol Cell ; 5(6): 927-37, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10911987

RESUMO

NuA4 is an essential histone H4/H2A acetyltransferase complex that interacts with activators and stimulates transcription in vitro. We have identified three novel NuA4 subunits: Act3/Arp4, an actin-related protein implicated in epigenetic control of transcription, Act1, and Epl1, a protein homologous to Drosophila Enhancer of Polycomb. Act3/Arp4 binds nucleosomes in vitro and is required for NuA4 integrity in vivo. Mutations in ACT3 and acetyltransferase-encoding ESA1 cause gene-specific transcription defects. Accordingly, NuA4 is localized in precise loci within the nucleus and does not overlap with the silent chromatin marker Sir3. These data along with the known epigenetic roles of Act3/Arp4 and homologs of Epl1 and Esa1 strongly support an essential role for chromatin structure modification by NuA4 in transcription regulation in vivo.


Assuntos
Acetiltransferases/química , Acetiltransferases/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Histona Acetiltransferases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transcrição Gênica/genética , Acetiltransferases/genética , Actinas/química , Actinas/genética , Actinas/metabolismo , Sequência de Aminoácidos , Cromatina/genética , Cromatina/metabolismo , Imunofluorescência , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Essenciais/genética , Genes Fúngicos/genética , Histonas/metabolismo , Substâncias Macromoleculares , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo
9.
EMBO J ; 19(12): 3060-8, 2000 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-10856249

RESUMO

Elp3 and Gcn5 are histone acetyltransferases (HATs) that function in transcription as subunits of Elongator and SAGA/ADA, respectively. Here we show that mutations that impair the in vitro HAT activity of Elp3 confer typical elp phenotypes such as temperature sensitivity. Combining an elp3Delta mutation with histone H3 or H4 tail mutations confers lethality or sickness, supporting a role for Elongator in chromatin remodelling in vivo. gcn5Deltaelp3Delta double mutants display a number of severe phenotypes, and similar phenotypes result from combining the elp mutation with mutation in a gene encoding a SAGA-specific, but not an ADA-specific subunit, indicating that Elongator functionally overlaps with SAGA. Because concomitant active site alterations in Elp3 and Gcn5 are sufficient to confer severe phenotypes, the redundancy must be specifically related to the HAT activity of these complexes. In support of this conclusion, gcn5Deltaelp3Delta phenotypes are suppressed by concomitant mutation of the HDA1 and HOS2 histone deacetylases. Our results demonstrate functional redundancy among transcription-associated HAT and deacetylase activities, and indicate the importance of a fine-tuned acetylation-deacetylation balance during transcription in vivo.


Assuntos
Acetiltransferases/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Acetilação , Acetiltransferases/genética , Histona Acetiltransferases , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Mutação , Fenótipo , Fatores de Transcrição/metabolismo
10.
Nucleic Acids Res ; 28(9): 1913-20, 2000 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-10756191

RESUMO

The general transcription factor TFIIB is a key component in the eukaryotic RNA polymerase II (RNAPII) transcriptional machinery. We have previously shown that a yeast TFIIB mutant (called YR1m4) with four amino acid residues in a species-specific region changed to corresponding human residues affects the expression of genes activated by different activators in vivo. We report here that YR1m4 can interact with several affected activators in vitro. In addition, YR1m4 and other mutants with amino acid alterations within the same region can interact with TATA-binding protein (TBP) and RNAPII normally. However, YR1m4 is defective in supporting activator-independent transcription in assays con-ducted both in vitro and in vivo. We further demonstrate that the interaction between the C-terminal core domain and the N-terminal region is weakened in YR1m4 and other related TFIIB mutants. These results suggest that the intramolecular interaction property of yeast TFIIB plays an important role in transcription regulation in cells.


Assuntos
Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Mutação , Ligação Proteica , RNA Polimerase II/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box , Transativadores/metabolismo , Fator de Transcrição TFIIB , Fatores de Transcrição/genética , Transcrição Gênica
11.
Mol Biol Cell ; 11(3): 915-27, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10712509

RESUMO

Gcn4, a yeast transcriptional activator that promotes the expression of amino acid and purine biosynthesis genes, is rapidly degraded in rich medium. Here we report that SCF(CDC4), a recently characterized protein complex that acts in conjunction with the ubiquitin-conjugating enzyme Cdc34 to degrade cell cycle regulators, is also necessary for the degradation of the transcription factor Gcn4. Degradation of Gcn4 occurs throughout the cell cycle, whereas degradation of the known cell cycle substrates of Cdc34/SCF(CDC4) is cell cycle regulated. Gcn4 ubiquitination and degradation are regulated by starvation for amino acids, whereas the degradation of the cell cycle substrates of Cdc34/SCF(CDC4) is unaffected by starvation. We further show that unlike the cell cycle substrates of Cdc34/SCF(CDC4), which require phosphorylation by the kinase Cdc28, Gcn4 degradation requires the kinase Pho85. We identify the critical target site of Pho85 on Gcn4; a mutation of this site stabilizes the protein. A specific Pho85-Pcl complex that is able to phosphorylate Gcn4 on that site is inactive under conditions under which Gcn4 is stable. Thus, Cdc34/SCF(CDC4) activity is constitutive, and regulation of the stability of its various substrates occurs at the level of their phosphorylation.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Peptídeo Sintases/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Estabilidade Enzimática , Fosforilação , Biossíntese de Proteínas , Proteínas Ligases SKP Culina F-Box , Transdução de Sinais , Treonina/metabolismo
12.
Mol Cell Biol ; 20(7): 2350-7, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10713159

RESUMO

Recent work has shown that transcription of the yeast HO gene involves the sequential recruitment of a series of transcription factors. We have performed a functional analysis of HO regulation by determining the ability of mutations in SIN1, SIN3, RPD3, and SIN4 negative regulators to permit HO expression in the absence of certain activators. Mutations in the SIN1 (=SPT2) gene do not affect HO regulation, in contrast to results of other studies using an HO:lacZ reporter, and our data show that the regulatory properties of an HO:lacZ reporter differ from that of the native HO gene. Mutations in SIN3 and RPD3, which encode components of a histone deacetylase complex, show the same pattern of genetic suppression, and this suppression pattern differs from that seen in a sin4 mutant. The Sin4 protein is present in two transcriptional regulatory complexes, the RNA polymerase II holoenzyme/mediator and the SAGA histone acetylase complex. Our genetic analysis allows us to conclude that Swi/Snf chromatin remodeling complex has multiple roles in HO activation, and the data suggest that the ability of the SBF transcription factor to bind to the HO promoter may be affected by the acetylation state of the HO promoter. We also demonstrate that the Nhp6 architectural transcription factor, encoded by the redundant NHP6A and NHP6B genes, is required for HO expression. Suppression analysis with sin3, rpd3, and sin4 mutations suggests that Nhp6 and Gcn5 have similar functions. A gcn5 nhp6a nhp6b triple mutant is extremely sick, suggesting that the SAGA complex and the Nhp6 architectural transcription factors function in parallel pathways to activate transcription. We find that disruption of SIN4 allows this strain to grow at a reasonable rate, indicating a critical role for Sin4 in detecting structural changes in chromatin mediated by Gcn5 and Nhp6. These studies underscore the critical role of chromatin structure in regulating HO gene expression.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Transativadores , Fatores de Transcrição/metabolismo , Ativação Transcricional , Acetiltransferases/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo II , Proteínas Fúngicas/genética , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Reporter , Proteínas HMGN , Histona Acetiltransferases , Histona Desacetilases , Complexo Mediador , Mutação , Proteínas Nucleares/genética , Proteínas Quinases/genética , RNA Polimerase II/genética , Fatores de Transcrição/genética
13.
Genetics ; 154(2): 573-86, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10655212

RESUMO

The Saccharomyces cerevisiae Sin3 transcriptional repressor is part of a large multiprotein complex that includes the Rpd3 histone deacetylase. A LexA-Sin3 fusion protein represses transcription of promoters with LexA binding sites. To identify genes involved in repression by Sin3, we conducted a screen for mutations that reduce repression by LexA-Sin3. One of the mutations identified that reduces LexA-Sin3 repression is in the RPD3 gene, consistent with the known roles of Rpd3 in transcriptional repression. Mutations in CBK1 and HYM1 reduce repression by LexA-Sin3 and also cause defects in cell separation and altered colony morphology. cbk1 and hym1 mutations affect some but not all genes regulated by SIN3 and RPD3, but the effect on transcription is much weaker. Genetic analysis suggests that CBK1 and HYM1 function in the same pathway, but this genetic pathway is separable from that of SIN3 and RPD3. The remaining gene from this screen described in this report is SDS3, previously identified in a screen for mutations that increase silencing at HML, HMR, and telomere-linked genes, a phenotype also seen in sin3 and rpd3 mutants. Genetic analysis demonstrates that SDS3 functions in the same genetic pathway as SIN3 and RPD3, and coimmunoprecipitation experiments show that Sds3 is physically present in the Sin3 complex.


Assuntos
Genes Fúngicos , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Sequência de Bases , Primers do DNA , Regulação Fúngica da Expressão Gênica , Mutagênese
14.
Mol Biol Cell ; 10(8): 2595-605, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10436015

RESUMO

Act3p/Arp4, an essential actin-related protein of Saccharomyces cerevisiae located within the nucleus, is, according to genetic data, involved in transcriptional regulation. In addition to the basal core structure of the actin family members, which is responsible for ATPase activity, Act3p possesses two insertions, insertions I and II, the latter of which is predicted to form a loop-like structure protruding from beyond the surface of the molecule. Because Act3p is a constituent of chromatin but itself does not bind to DNA, we hypothesized that insertion II might be responsible for an Act3p-specific function through its interaction with some other chromatin protein. Far Western blot and two-hybrid analyses revealed the ability of insertion II to bind to each of the core histones, although with somewhat different affinities. Together with our finding of coimmunoprecipitation of Act3p with histone H2A, this suggests the in vivo existence of a protein complex required for correct expression of particular genes. We also show that a conditional act3 mutation affects chromatin structure of an episomal DNA molecule, indicating that the putative Act3p complex may be involved in the establishment, remodeling, or maintenance of chromatin structures.


Assuntos
Actinas/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Actinas/química , Actinas/genética , Western Blotting , Cromatina/química , Cromatina/metabolismo , Células Híbridas , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética
15.
J Biol Chem ; 274(30): 21029-36, 1999 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-10409653

RESUMO

Swi5 and Ace2 are cell cycle-regulated transcription factors that activate expression of early G(1)-specific genes in Saccharomyces cerevisiae. Swi5 and Ace2 have zinc finger DNA-binding domains that are highly conserved, and the two proteins bind to the same DNA sequences in vitro. Despite this similarity in DNA binding, Swi5 and Ace2 activate different genes in vivo, with Swi5 activating the HO gene and Ace2 activating CTS1 expression. In this report we have used chimeric fusions between Swi5 and Ace2 to determine what regions of these proteins are necessary for promoter-specific activation of HO and CTS1. We have identified specific regions of Swi5 and Ace2 that are required for activation of HO and CTS1, respectively. The Swi5 protein binds HO promoter DNA cooperatively with the Pho2 homeodomain protein, and the HO specificity region of Swi5 identified in the chimeric analysis coincides with the region of Swi5 previously identified that interacts with Pho2 in vitro. Swi5 and Ace2 also activate expression of a number of other genes expressed in G(1) phase of the cell cycle, including ASH1, CDC6, EGT2, PCL2, PCL9, RME1, and SIC1. Analysis of the Swi5/Ace2 chimeras shows that distinct regions of Swi5 and Ace2 contribute to the transcriptional activation of some of these other G(1)-regulated genes.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Sequência de Bases , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Dados de Sequência Molecular , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
16.
Mol Cell Biol ; 18(11): 6436-46, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9774660

RESUMO

The Swi5 zinc finger and the Pho2 homeodomain DNA-binding proteins bind cooperatively to the HO promoter. Pho2 (also known as Bas2 or Grf10) activates transcription of diverse genes, acting with multiple distinct DNA-binding proteins. We have performed a genetic screen to identify amino acid residues in Swi5 that are required for synergistic transcriptional activation of a reporter construct in vivo. Nine unique amino acid substitutions within a 24-amino-acid region of Swi5, upstream of the DNA-binding domain, reduce expression of promoters that require both Swi5 and Pho2 for activation. In vitro DNA binding experiments show that the mutant Swi5 proteins bind DNA normally, but some mutant Swi5 proteins (resulting from SWI5* mutations) show reduced cooperative DNA binding with Pho2. In vivo experiments show that these SWI5* mutations sharply reduce expression of promoters that require both SWI5 and PHO2, while expression of promoters that require SWI5 but are PHO2 independent is largely unaffected. This suggests that these SWI5* mutations do not affect the ability of Swi5 to bind DNA or activate transcription but specifically affect the region of Swi5 required for interaction with Pho2. Two-hybrid experiments show that amino acids 471 to 513 of Swi5 are necessary and sufficient for interaction with Pho2 and that the SWI5* point mutations cause a severe reduction in this two-hybrid interaction. Analysis of promoter activation by these mutants suggests that this small region of Swi5 has at least two distinct functions, conferring specificity for activation of the HO promoter and for interaction with Pho2.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Transativadores/metabolismo , Fatores de Transcrição/química , Dedos de Zinco/genética , Sequência de Aminoácidos , Quinases Ciclina-Dependentes/genética , Regulação Fúngica da Expressão Gênica/genética , Genes Reporter/genética , Dados de Sequência Molecular , Fosforilação , Plasmídeos/genética , Mutação Puntual/genética , Regiões Promotoras Genéticas/genética , Endonucleases Específicas para DNA e RNA de Cadeia Simples/metabolismo , Ativação Transcricional/fisiologia
17.
Mol Gen Genet ; 256(4): 376-86, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9393435

RESUMO

The yeast SIN3 gene functions as a transcriptional repressor, despite the fact that Sin3p does not bind DNA directly. We have conducted a two-hybrid screen to look for proteins that interact with Sin3p, using the PAH2 domain of Sin3p as bait. Five new genes, STB1-STB5 were identified, as well as the STB6 gene, which is similar to STB2. STB1, STB2, STB3, and STB6 are novel genes, and STB4 and STB5 encode C6 zinc cluster DNA-binding proteins. None of these genes is essential for viability, and several of these genes may encode transcriptional activators. Several special problems were encountered in using a transcriptional repressor in a two-hybrid screen. For example, the STB genes will interact with a LexA-Sin3(PAH2) fusion protein containing a region of Sin3p, but a LexA-Sin3p fusion protein containing full-length Sin3p, along with a STB clone, does not produce two-hybrid activation of a transcriptional reporter. In addition, a sin3 mutation reduces the transcriptional activation by two-hybrid partners, suggesting that a sin3 mutation reduces the transcriptional efficiency of the Gal4p and VP16 activation domains. We have shown previously that Sin3p is part of a large multiprotein complex, and we show here that Stb1p and Stb2p are present in this complex.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transativadores/genética , Fatores de Transcrição/metabolismo , Sequência de Bases , Sítios de Ligação , DNA Fúngico , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Deleção de Genes , Histona Desacetilases , Óperon Lac , Dados de Sequência Molecular , Mutação , Proteínas Repressoras , Transativadores/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional
18.
Mol Cell Biol ; 17(8): 4852-8, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9234741

RESUMO

The SIN3 gene is required for the transcriptional repression of diverse genes in Saccharomyces cerevisiae. Sin3p does not bind directly to DNA but is thought to be targeted to promoters by interacting with sequence-specific DNA-binding proteins. We show here that Sin3p is present in a large multiprotein complex with an apparent molecular mass, estimated by gel filtration chromatography, of greater than 2 million Da. Genetic studies have shown that the yeast RPD3 gene has a function similar to that of SIN3 in transcriptional regulation, as SIN3 and RPD3 negatively regulate the same set of genes. The SIN3 and RPD3 genes are conserved from yeasts to mammals, and recent work suggests that RPD3 may encode a histone deacetylase. We show that Rpd3p is present in the Sin3p complex and that an rpd3 mutation eliminates SIN3-dependent repression. Thus, Sin3p may function as a bridge to recruit the Rpd3p histone deacetylase to specific promoters.


Assuntos
Proteínas Fúngicas/análise , Proteínas Repressoras/análise , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/química , Fatores de Transcrição/análise , Proteínas de Bactérias/genética , Cromatografia em Gel/métodos , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Histona Desacetilases , Substâncias Macromoleculares , Peso Molecular , Complexos Multiproteicos , Proteínas Recombinantes de Fusão , Proteínas Repressoras/metabolismo , Serina Endopeptidases/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
19.
Mol Cell Biol ; 17(5): 2669-78, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-9111337

RESUMO

The SWI5 gene encodes a zinc finger DNA-binding protein required for the transcriptional activation of the yeast HO gene. There are two Swi5p binding sites in the HO promoter, site A at -1800 and site B at -1300. Swi5p binding at site B has been investigated in some detail, and we have shown that Swi5p binds site B in a mutually cooperative fashion with Pho2p, a homeodomain protein. In this report, we demonstrate that Swi5p and Pho2p bind cooperatively to both sites A and B but that there are differences in binding to these two promoter sites. It has been shown previously that point mutations in either Swi5p binding site only modestly reduce HO expression in a PHO2 strain. We show that these mutant promoters are completely inactive in a pho2 mutant. We have created stronger point mutations at the two Swi5p binding sites within the HO promoter, and we show that the two binding sites, separated by 500 bp, are both absolutely required for HO expression, independent of PHO2. These results create an apparent dilemma, as the strong mutations at the Swi5p binding sites show that both binding sites are required for HO expression, but the earlier binding site mutations allow Swi5p to activate HO, but only in the presence of Pho2p. To explain these results, a model is proposed in which physical interaction between Swi5p proteins bound to these two sites separated by 500 bp is required for activation of the HO promoter. Experimental evidence is presented that supports the model. In addition, through deletion analysis we have identified a region near the amino terminus of Swi5p that is required for PHO2-independent activation of HO, suggesting that this region mediates the long-range interactions between Swi5p molecules bound at the distant sites.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Homeodomínio , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/metabolismo , Transcrição Gênica , Dedos de Zinco , Sequência de Bases , Modelos Moleculares , Dados de Sequência Molecular , Relação Estrutura-Atividade , Transativadores/metabolismo
20.
Nucleic Acids Res ; 25(6): 1240-7, 1997 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-9092635

RESUMO

Sin4p is a component of a mediator complex associated with the C-terminal domain of RNA polymerase II and SIN4 is required for proper regulation of several genes in yeast, including the HO endonuclease gene, glucose repressible genes and MATa cell-specific genes. Previous studies indicated that SIN4 may influence transcription through changes in the organization of chromatin. We have examined a specific chromatin structure associated with MATa cell-specific repression in sin4 MATalpha cells to determine if SIN4 is required for nucleosome positioning. Although the loss of SIN4 has no effect on nucleosome location, we find that the sensitivity of bulk chromatin from sin4 cells to micrococcal nuclease digestion is strikingly increased relative to chromatin from isogenic wild-type cells. The nuclease hypersensitivity of chromatin from sin4 cells is not related to gross alterations in histone gene expression or to bulk increases in histone modification. Our experiments suggest that SIN4 directly or indirectly regulates a global aspect of chromatin accessibility, providing a molecular basis for phenotypic similarities between sin4 mutations and mutations in histones.


Assuntos
Cromatina/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transativadores/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/biossíntese , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Histonas/biossíntese , Fator de Acasalamento , Complexo Mediador , Biossíntese Peptídica , Peptídeos/genética , Feromônios/biossíntese , RNA Polimerase I/metabolismo , RNA Polimerase II/metabolismo , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...