Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 112(12): 2553-62, 2008 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-18318515

RESUMO

Quasi-classical trajectory (QCT) calculations on a model potential energy surface (PES) show strong deviations from statistical Rice-Ramsperger-Kassel-Marcus (RRKM) rate theory for the decomposition reaction (1) CH3OONO* --> CH3O + NO2, where the highly excited CH3OONO* was formed by (2) CH3O2 + NO --> CH3OONO*. The model PES accurately describes the vibrational frequencies, structures, and thermochemistry of the cis- and trans-CH3OONO isomers; it includes cis-trans isomerization in addition to reactions 1 and 2 but does not include nitrate formation, which is too slow to affect the decay rate of CH3OONO*. The QCT results give a strongly time-dependent rate constant for decomposition and damped oscillations in the decomposition rate, not predicted by statistical rate theory. Anharmonicity is shown to play an important role in reducing the rate constant by a factor of 10 smaller than predicted using classical harmonic RRKM theory (microcanonical variational transition state theory). Master equation simulations of organic nitrate yields published previously by two groups assumed that RRKM theory is accurate for reactions 1 and 2 but required surprising parametrizations to fit experimental nitrate yield data. In the present work, it is hypothesized that the non-RRKM rate of reaction (1) and vibrational anharmonicity are at least partly responsible for the surprising parameters.

2.
J Phys Chem A ; 110(21): 6851-9, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16722701

RESUMO

Classical trajectory calculations on intramolecular vibrational energy redistribution (IVR) involving the torsion in 1,1,1-trifluoroethane (TFE) are reported. Two potential energy functions (PEFs) are used to describe the potential energy surface. The "full" PEF gives excellent agreement with the experimental vibrational frequencies. The "simple" PEF omits nondiagonal interaction terms, but still gives very good agreement with the experimental frequencies. The "simple" PEF is intended to minimize mode-mode coupling. Neither PEF includes the HF elimination reaction. Calculations are carried out both with nominal microcanonical selection of initial coordinates and momenta, and with a modified selection method that places controlled amounts of energy in the torsion. Total (classical) vibrational energies from 0.005 to 140 kcal mol(-1) are investigated. The calculated time constants describing energy flow out of the torsional mode are <10 ps for classical vibrational energies near the classical reaction threshold energy (approximately 75 kcal mol(-1)) and greater. It is found that the rate of decay from the torsion largely depends on the amount of energy in the other vibrational modes. Analysis using power spectra shows that the torsional mode in TFE is strongly coupled to the other vibrational modes. These results strongly suggest that vibrational energy in TFE will not be sequestered in the torsion for time periods greater than a few tens of picoseconds when the molecule has enough energy to react via HF elimination.

3.
J Phys Chem A ; 110(9): 2944-54, 2006 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-16509617

RESUMO

The experimental shock tube data recently reported by Kiefer et al. [J. Phys. Chem. A 2004, 108, 2443-2450] for the title reaction at temperatures between 1600 and 2400 K have been compared to master equation simulations using three models: (a) standard RRKM theory, (b) RRKM theory modified by local random matrix theory, which introduces dynamical corrections arising from slow intramolecular vibrational energy randomization, and (c) an ad hoc empirical non-RRKM model. Only the third model provides a good fit of the Kiefer et al. unimolecular reaction rate data. In separate simulations, all three models accurately reproduce the experimental 300 K chemical activation data of Marcoux and Setser [J. Phys. Chem. 1978, 82, 97-108] when the energy transfer parameters are freely varied to fit the data. When experimental energy transfer parameters for a geometrical isomer (1,1,2-trifluoroethane) are used, the standard RRKM model fits the chemical activation data better than the other models, but if energy transfer in the 1,1,1-trifluoroethane is significantly reduced in comparison to the 1,1,2 isomer, then the empirical ad hoc non-RRKM model also gives a good fit. While the ad hoc empirical non-RRKM model can be made to fit the data, it is not based on theory, and we argue that it is physically unrealistic. We also show that the master equation simulations can mimic the Kiefer et al. vibrational relaxation data, which was the first shock tube observation of double-exponential relaxation. We conclude that, until more data on the trifluoroethanes become available, the current evidence is insufficient to decide with confidence whether non-RRKM effects are important in this reaction, or whether the Kiefer et al. data can be explained in some other way.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...