Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 294(18): 7388-7402, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30862675

RESUMO

The hepatitis C virus (HCV) nonstructural protein 5A (NS5A) plays a key role in viral replication and virion assembly, and the regulation of the assembly process critically depends on phosphorylation of both serine and threonine residues in NS5A. We previously identified SRC proto-oncogene, nonreceptor tyrosine kinase (c-Src), as an essential host component of the HCV replication complex consisting of NS5A, the RNA-dependent RNA polymerase NS5B, and c-Src. Pulldown assays revealed an interaction between NS5A and the Src homology 2 (SH2) domain of c-Src; however, the precise binding mode remains undefined. In this study, using a variety of biochemical and biophysical techniques, along with molecular dynamics simulations, we demonstrate that the interaction between NS5A and the c-Src SH2 domain strictly depends on an intact phosphotyrosine-binding competent SH2 domain and on tyrosine phosphorylation within NS5A. Detailed analysis of c-Src SH2 domain binding to a panel of phosphorylation-deficient NS5A variants revealed that phosphorylation of Tyr-93 located within domain 1 of NS5A, but not of any other tyrosine residue, is crucial for complex formation. In line with these findings, effective replication of subgenomic HCV replicons as well as production of infectious virus particles in mammalian cell culture models were clearly dependent on the presence of tyrosine at position 93 of NS5A. These findings indicate that phosphorylated Tyr-93 in NS5A plays an important role during viral replication by facilitating NS5A's interaction with the SH2 domain of c-Src.


Assuntos
Hepacivirus/fisiologia , Tirosina/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Quinases da Família src/metabolismo , Linhagem Celular Tumoral , Humanos , Fosforilação , Ligação Proteica , Proto-Oncogene Mas , Proteínas não Estruturais Virais/química , Domínios de Homologia de src
2.
J Hepatol ; 69(3): 594-602, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29705238

RESUMO

BACKGROUND & AIMS: To affect immune response and inflammation, the hepatitis C virus (HCV) substantially influences intercellular communication pathways that are decisive for immune cell recruitment. The present study investigates mechanisms by which HCV modulates chemokine-mediated intercellular communication from infected cells. METHODS: Chemokine expression was studied in HCVcc-infected cell lines or cell lines harbouring a subgenomic replicon, as well as in serum samples from patients. Expression or activity of mediators and signalling intermediates was manipulated using knockdown approaches or specific inhibitors. RESULTS: HCV enhances expression of CXCR2 ligands in its host cell via the induction of epidermal growth factor (EGF) production. Knockdown of EGF or of the p65 subunit of the NF-κB complex results in a substantial downregulation of HCV-induced CXCR2 ligand expression, supporting the involvement of an EGF-dependent mechanism as well as activation of NF-κB. Furthermore, HCV upregulates expression of CXCR2 ligands in response to EGF stimulation via downregulation of the T-cell protein tyrosine phosphatase (TC-PTP [PTPN2]), activation of NF-κB, and enhancement of EGF-inducible signal transduction via MEK1 (MAP2K1). This results in the production of a cytokine/chemokine pattern by the HCV-infected cell that can recruit neutrophils but not monocytes. CONCLUSIONS: These data reveal a novel EGF-dependent mechanism by which HCV influences chemokine-mediated intercellular communication. We propose that this mechanism contributes to modulation of the HCV-induced inflammation and the antiviral immune response. LAY SUMMARY: In most cases hepatitis C virus (HCV) results in chronic infection and persistent viral replication, taking decades until development of overt disease. To achieve such a course, the respective virus must have developed mechanisms to circumvent antiviral response, to modulate the inflammatory response and to utilise the infrastructure of its host with moderate effect on its viability. The present study provides novel data indicating that HCV induces epidermal growth factor production in its host cell, enhancing epidermal growth factor-inducible expression of chemokines that bind to the CXCR2 receptor and recruit neutrophile granulocytes. Importantly, chemokines are critical mediators determining the pattern of immune cells recruited to the site of injury and thereby the local inflammatory and immunological milieu. These data strongly suggest that HCV triggers mechanisms that enable the virus to influence the inflammatory and immunological processes of its host.


Assuntos
Comunicação Celular/imunologia , Fator de Crescimento Epidérmico , Hepacivirus/fisiologia , Hepatite C Crônica , Inflamação , Receptores de Interleucina-8B/imunologia , Transdução de Sinais/imunologia , Linhagem Celular , Fator de Crescimento Epidérmico/imunologia , Fator de Crescimento Epidérmico/metabolismo , Hepatite C Crônica/imunologia , Hepatite C Crônica/virologia , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Celular , Inflamação/imunologia , Inflamação/virologia , Regulação para Cima , Replicação Viral/fisiologia
3.
PLoS One ; 11(2): e0148711, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26886748

RESUMO

Recently, the epidermal growth factor (EGF) receptor (EGFR), a member of the ErbB receptor family, and its down-stream signalling have been identified as co-factors for HCV entry and replication. Since EGFR also functions as a heterodimer with other ErbB receptor family members, the subject of the present study was to investigate a possible viral interference with these cellular components. By using genotype 1b replicon cells as well as an infection-based system we found that while transcript and protein levels of EGFR and ErbB2 were up-regulated or unaffected, respectively, HCV induced a substantial reduction of ErbB3 and ErbB4 expression. Down-regulation of ErbB3 expression by HCV involves specificity protein (Sp)1-mediated induction of Neuregulin (NRG)1 expression as well as activation of Akt. Consistently, at transcript level disruption of ErbB3 expression by HCV can be prevented by knockdown of NRG1 or Sp1 expression, whereas reconstitution of ErbB3 protein levels requires inhibition of HCV-induced NRG1 expression and of Akt activity. Interestingly, the NRG1-mediated suppression of ErbB3 expression by HCV results in an enhanced expression of EGFR and ErbB2 on the cell surface, which can be mimicked by siRNA-mediated knockdown of ErbB3 expression. These data delineate a novel mechanism enabling HCV to sway the composition of the ErbB family members on the surface of its host cell by an NRG1-driven circuit and unravels a yet unknown cross-regulation between ErbB3 and the two other family members ErbB2 and EGFR. The shift of the receptor surface expression of the ErbB family towards enhanced expression of ErbB2 and EGFR triggered by HCV was found to promote viral RNA replication and infectivity. This suggests that HCV rearranges expression of ErbB family members to adapt the cellular environment to its requirements.


Assuntos
Receptores ErbB/metabolismo , Hepacivirus/metabolismo , Neuregulina-1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Dimetil Sulfóxido/farmacologia , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Epirregulina/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Hepacivirus/patogenicidade , Humanos , Ligantes , Modelos Biológicos , Neuregulina-1/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição Sp1/metabolismo , Regulação para Cima/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...