Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 367(1586): 236-46, 2012 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-22144386

RESUMO

Anticipating how biodiversity will respond to climate change is challenged by the fact that climate variables affect individuals in competition with others, but interest lies at the scale of species and landscapes. By omitting the individual scale, models cannot accommodate the processes that determine future biodiversity. We demonstrate how individual-scale inference can be applied to the problem of anticipating vulnerability of species to climate. The approach places climate vulnerability in the context of competition for light and soil moisture. Sensitivities to climate and competition interactions aggregated from the individual tree scale provide estimates of which species are vulnerable to which variables in different habitats. Vulnerability is explored in terms of specific demographic responses (growth, fecundity and survival) and in terms of the synthetic response (the combination of demographic rates), termed climate tracking. These indices quantify risks for individuals in the context of their competitive environments. However, by aggregating in specific ways (over individuals, years, and other input variables), we provide ways to summarize and rank species in terms of their risks from climate change.


Assuntos
Biodiversidade , Mudança Climática , Modelos Teóricos , Árvores/crescimento & desenvolvimento , Teorema de Bayes , Simulação por Computador , Modelos Biológicos , Árvores/genética
2.
Ecol Lett ; 14(12): 1273-87, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21978194

RESUMO

As ecological data are usually analysed at a scale different from the one at which the process of interest operates, interpretations can be confusing and controversial. For example, hypothesised differences between species do not operate at the species level, but concern individuals responding to environmental variation, including competition with neighbours. Aggregated data from many individuals subject to spatio-temporal variation are used to produce species-level averages, which marginalise away the relevant (process-level) scale. Paradoxically, the higher the dimensionality, the more ways there are to differ, yet the more species appear the same. The aggregate becomes increasingly irrelevant and misleading. Standard analyses can make species look the same, reverse species rankings along niche axes, make the surprising prediction that a species decreases in abundance when a competitor is removed from a model, or simply preclude parameter estimation. Aggregation explains why niche differences hidden at the species level become apparent upon disaggregation to the individual level, why models suggest that individual-level variation has a minor impact on diversity when disaggregation shows it to be important, and why literature-based synthesis can be unfruitful. We show how to identify when aggregation is the problem, where it has caused controversy, and propose three ways to address it.


Assuntos
Biodiversidade , Biologia Computacional/métodos , Ecologia/métodos , Modelos Biológicos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...