Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 606(Pt 2): 1983-1997, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34695763

RESUMO

Materials made of synthetic vitreous mineral fibers, such as stone wool, are widely used in construction, in functional composites and as thermal and acoustic insulation. Chemical stability is an important parameter in assessing long term durability of the products. Stability is determined by fiber resistivity to dissolution, where the controlling parameters are solid surface area to solution volume ratio (S/V), pH and composition of the fibers and organic compounds used as binders. We investigated stone wool dissolution under flow through conditions, far from equilibrium, at pH range of 2 to 13, as well as under batch conditions, close to equilibrium, for up to 28 days, where S/V ranged from 100 to 10000 m-1. The dissolution rate of stone wool shows minimum at pH 8.5 and increases significantly at pH < 4.5 and pH > 12. In close to equilibrium conditions, S/V defines the steady state concentration for the leached components. Decreased dissolution rate could result from evolution of a surface leached layer or the formation of secondary surface phases or both. We suggested three dissolution rate controlling mechanisms, which depend on pH. That is, dissolution is controlled by: a SiO2 rich surface layer at pH < 4.5; by adsorption of an Al and Al-Si mixed surface layer at 5 < pH < 11 and by divalent cation adsorption and formation of secondary phases (silicates, hydroxides) at pH âˆ¼ 13. The organic compounds, used to treat the stone wool fibers during manufacture, had no influence on their dissolution properties.

2.
Langmuir ; 36(42): 12451-12459, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32975124

RESUMO

We have developed a method for predicting the solvation contribution to solid-liquid interfacial tension (IFT) based on density functional theory and the implicit solvent model COSMO-RS. Our method can be used to predict wetting behavior for a solid surface in contact with two liquids. We benchmarked our method against measurements of contact angle from water-in-oil on silica wafers and a range of self-assembled monolayers (SAMs) with different compositions, ranging from oil-wet to water-wet. We also compared our predictions to literature data for wetting of a polydimethylsilane surface. By explicitly including deprotonation for silica surfaces and carboxylic acid SAMs, very good agreement was obtained with experimental data for nearly all surfaces. Poor agreement was found for amine-terminated SAMs, which could be the result of both method and model insufficiencies and impurities known to be present for such surfaces. Solid-liquid IFT cannot be measured directly, making predictions such as from our method all the more important.

3.
ACS Appl Mater Interfaces ; 12(32): 36740-36754, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32663394

RESUMO

The ability of bulk glass and fibers to react in aqueous solution, with organic polymers and coupling agents, depends on the surface charge, reactivity, and adsorption properties of the glass surface, i.e. the character and density of surface -OH groups, whereas glass and fiber chemical stability and biosolubility depend on the resistance to dissolution. If glass dissolution products are accumulated in a media, they can change the surface properties by specific adsorption. We determined the -OH surface concentration, reactivity, adsorption, and dissolution properties of aluminosilicate glasses containing various modifiers and compared the results with the behavior of complex mineral wool fibers. Using proton consumption and element release from batch surface titration experiments, over the range 5 < pH < 10, surface -OH adsorption properties were modeled with the FITEQL program. During titration, network modifiers in the glass subsurface are preferentially replaced by protons, resulting in cation accumulation in the solution and formation of a leached layer enriched with Si on the solid. The behavior of Al was different. At 5 < pH < 9, only very small amounts of Al were found in the leachates, which can be explained by almost complete Al adsorption as stable surface complexes, i.e. >XOAl(OH)2 (where X = Si or Al and > represents the surface). At pH > 9, divalent cations adsorbed specifically, as >XOMe+ complexes (Me = Ca or Mg). This deeper understanding of the surface behavior of glasses and fibers is important for the design of composite materials, for applications in biology and medicine and in materials production in general, as well as for understanding natural processes, such as global uptake estimates of CO2 during rock weathering.

4.
Nanoscale Adv ; 2(8): 3323-3333, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36134299

RESUMO

Microbial production of iron (oxyhydr)oxides on polysaccharide rich biopolymers occurs on such a vast scale that it impacts the global iron cycle and has been responsible for major biogeochemical events. Yet the physiochemical controls these biopolymers exert on iron (oxyhydr)oxide formation are poorly understood. Here we used dynamic force spectroscopy to directly probe binding between complex, model and natural microbial polysaccharides and common iron (oxyhydr)oxides. Applying nucleation theory to our results demonstrates that if there is a strong attractive interaction between biopolymers and iron (oxyhydr)oxides, the biopolymers decrease the nucleation barriers, thus promoting mineral nucleation. These results are also supported by nucleation studies and density functional theory. Spectroscopic and thermogravimetric data provide insight into the subsequent growth dynamics and show that the degree and strength of water association with the polymers can explain the influence on iron (oxyhydr)oxide transformation rates. Combined, our results provide a mechanistic basis for understanding how polymer-mineral-water interactions alter iron (oxyhydr)oxides nucleation and growth dynamics and pave the way for an improved understanding of the consequences of polymer induced mineralization in natural systems.

5.
Water Res ; 168: 115170, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655435

RESUMO

Consumption of drinking water containing arsenic at concentrations even below the World Health Organization provisional limit of 10 µg/L can still lead to unacceptable health risks. Consequently, the drinking water sector in the Netherlands has recently agreed to target 1 µg/L of arsenic in treated water. Unfortunately, in many poor, arsenic-affected countries, the costs and complexity of current methods that can achieve <1 µg/L are prohibitive, which highlights the need for innovative methods that can remove arsenic to <1 µg/L without costly support infrastructure and complicated supply chains. In this work, we used Fe(0) electrolysis, a low cost and scalable technology that is also known as Fe(0) electrocoagulation (EC), to achieve <1 µg/L residual dissolved arsenic. We compared the arsenic removal performance of green rust (GR), ferric (oxyhydr)oxides (Fe(III) oxides) and magnetite (Mag) generated by EC at different pH (7.5 and 9) in the presence of As(III) or As(V) (initial concentrations of 200-11,000 µg/L). Although GR and Fe(III) oxides removed up to 99% of initial arsenic, neither Fe phase could reliably meet the 1 µg/L target at both pH values. In contrast, EC-generated Mag consistently achieved <1 µg/L, regardless of the initial As(V) concentration and pH. Only solutions with initial As(III) concentrations ≥2200 µg/L resulted in residual arsenic >1 µg/L. As K-edge X-ray absorption spectroscopy showed that Mag also sorbed arsenic in a unique mode, consistent with partial arsenic incorporation near the particle surface. This sorption mode contrasts with the binuclear, corner sharing surface complex for GR and Fe(III) oxides, which could explain the difference in arsenic removal efficiency among the three Fe phases. Our results suggest that EC-generated Mag is an attractive method for achieving <1 µg/L particularly in decentralized water treatment.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Eletrólise , Compostos Férricos , Óxido Ferroso-Férrico , Países Baixos , Oxirredução
6.
Langmuir ; 35(50): 16669-16678, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31714788

RESUMO

Assessment of the risks and environmental impacts of carbon geosequestration requires knowledge about the wetting behavior of mineral surfaces in the presence of CO2 and the pore fluids. In this context, the interfacial tension (IFT) between CO2 and the aqueous fluid and the contact angle, θ, with the pore mineral surfaces are the two key parameters that control the capillary pressure in the pores of the candidate host rock. Knowledge of these two parameters and their dependence on the local conditions of pressure, temperature, and salinity is essential for the correct prediction of structural and residual trapping. We have performed classical molecular dynamics simulations to predict the CO2-water IFT and the CO2-water-calcite contact angle. The IFT results are consistent with previous simulations, where simple point charge water models have been shown to underestimate the water surface tension, thus affecting the simulated IFT values. When combined with the EPM2 CO2 model, the SPC/Fw water model indeed underestimates the IFT in the low-pressure region at all temperatures studied. On the other hand, at high pressure and low temperature, the IFT is overestimated by ∼5 mN/m. Literature data regarding the CO2/water/calcite contact angle on calcite are contradictory. Using our new set of force field parameters, we performed NVT simulations at 323 K and 20 MPa to calculate the contact angle of a water droplet on the calcite {10.4} surface in a CO2 atmosphere. We performed simulations for both spherical and cylindrical droplet configurations for different initial radii to study the size dependence of the water contact angle on calcite in the presence of CO2. Our results suggest that the contact angle of a cylindrical droplet, is independent of droplet size, for droplets with a radius of 50 Å or more. On the contrary, spherical droplets make a contact angle that is strongly influenced by their size. At the largest size explored in this study, both spherical and cylindrical droplets converge to the same contact angle, 38°, indicating that calcite is strongly wetted by water.

7.
Langmuir ; 35(49): 16153-16163, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31722180

RESUMO

Interactions between organic molecules in aqueous environments, whether in the fluid phase or adsorbed on solids, are often affected by the cations present in the solution. We investigated, at nanometer scale, how surface carboxylate interactions are influenced by dissolved divalent cations: Mg2+, Ca2+, Sr2+, and Ba2+. Self-assembled monolayer (SAM) surfaces with exposed terminations of alkyl, -CH3, carboxylate, -COO- , or dicarboxylate, -DiCOO-, were deposited on gold-coated tips and substrates. We used atomic force microscopy (AFM), in chemical force mapping (CFM) mode, to measure adhesion forces between various combinations of SAMs on the tip and substrate, in solutions of 0.5 M NaCl, that contained 0.012 M of one of the divalent cations. The type of cation, the number of carboxyl groups that interact, and their structure on the SAM influenced adhesion between the surfaces. The effect of the reference solution, which only contains Na+ cations, on adhesion force was mainly attributed to van der Waals and hydrophobic forces, explaining the lower force in systems that are more hydrophilic, i.e., -COO--COO-, and higher force for more hydrophobic systems. For charged surfaces, i.e., -COO- and -DiCOO-, in divalent cation solutions results were consistent with ion bridging. The inclusion of a hydrophobic surface, i.e., the -CH3-COO- or -CH3-DiCOO- system, decreased the possibility for strong cation bridging with the charged surface, resulting in lower adhesion. For systems including -COO-, the adhesion force series followed the inverse cation hydrated radius trend (Na+ ≈ Mg2+ < Sr2+ < Ca2+ < Ba2+) whereas -DiCOO- was responsible for lower adhesion force and modified trends, depending on the corresponding surface in the system. Differences in force magnitude between the monolayers were correlated with lower charge availability on the -DiCOO- surface as a result of fewer active sites, probably because of the tendency of exposed malonate surface groups to interact between them, as well as high rigidity, resulting from the molecule structure. The characteristic response of the -DiCOO- surface in solutions of Sr2+ and Ca2+ was correlated with possible malonate complexation modes. Comparison with previous studies suggested that the strong response of a -DiCOO- surface to Sr2+ resulted from bidentate chelation, whereas Ca2+ response was attributed to alpha-mode association to malonate.

8.
J Magn Reson ; 308: 106597, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31546178

RESUMO

The interpretation of nuclear magnetic resonance (NMR) data is of interest in a number of fields. In Ögren (2014) local boundary conditions for random walk simulations of NMR relaxation in digital domains were presented. Here, we have applied those boundary conditions to large, three-dimensional (3D) porous media samples. We compared the random walk results with known solutions and then applied them to highly structured 3D domains, from images derived using synchrotron radiation CT scanning of North Sea chalk samples. As expected, there were systematic errors caused by digitalization of the pore surfaces so we quantified those errors, and by using linear local boundary conditions, we were able to significantly improve the output. We also present a technique for treating numerical data prior to input into the ESPRIT algorithm for retrieving Laplace components of time series from NMR data (commonly called T-inversion).

9.
Sci Rep ; 9(1): 11272, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375705

RESUMO

In this study we investigated fluid displacement water with supercritical (sc) CO2 in chalk under conditions close to those used for geologic CO2 sequestration (GCS), to answer two main questions: How much volume is available for scCO2 injection? And what is the main mechanism of displacement over a range of temperatures? Characterization of immiscible scCO2 displacement, at the pore scale in the complex microstructure in chalk reservoirs, offers a pathway to better understand the macroscopic processes at the continuum scale. Fluid behavior was simulated by solving the Navier-Stokes equations, using finite-volume methods within a pore network. The pore network was extracted from a high resolution 3D image of chalk, obtained using X-ray nanotomography. Viscous fingering dominates scCO2 infiltration and pores remain only partially saturated. The unstable front, developed with high capillary number, causes filling of pores aligned with the flow direction, reaching a maximum of 70% scCO2 saturation. The saturation rate increases with temperature but the final saturation state is the same for all investigated temperatures. The higher the saturation rate, the higher the dynamic capillary pressure coefficient. A higher dynamic capillary pressure coefficient indicates that scCO2 needs more time to reach capillary equilibrium in the porous medium.

10.
PLoS One ; 13(9): e0204165, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30235268

RESUMO

The tendency for irreversible processes to generate entropy is the ultimate driving force for structure evolution in nature. In engineering, entropy production is often used as an indicator for loss of usable energy. In this study, we show that the analysis of entropy production patterns can provide insight into the diverse observations from experiments that investigate porous medium dissolution in imposed flow field. We first present a numerical scheme for the analysis of entropy production in dissolving porous media. Our scheme uses a greyscale digital model for chalk (an extremely fine grained rock), that was obtained using X-ray nanotomography. Greyscale models preserve structural heterogeneities with very high fidelity. We focussed on the coupling between two types of entropy production: the percolative entropy, generated by dissipating the kinetic energy of fluid flow, and the reactive entropy, originating from the consumption of chemical free energy. Their temporal patterns pinpoint three stages of microstructural evolution. We then showed that local mixing deteriorates fluid channelisation by reducing local variations of reactant concentration. We also showed that microstructural evolution can be sensitive to the initial transport heterogeneities, when the macroscopic flowrate is low. This dependence on flowrate indicates the need to resolve the structural features of a porous system when fluid residence time is long.


Assuntos
Entropia , Reologia , Simulação por Computador , Porosidade , Fatores de Tempo
11.
Langmuir ; 34(35): 10254-10261, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30085678

RESUMO

Interactions between mineral surfaces and organic molecules are fundamental to life processes. The presence of cations in natural environments can change the behavior of organic compounds and thus alter the mineral-organic interfaces. We investigated the influence of Na+, Mg2+, Ca2+, Sr2+, and Ba2+ on the interaction between two models, self-assembled monolayers, that were tailored to have hydrophobic -CH3 or hydrophilic -COO(H) terminations. Atomic force microscopy in chemical force mapping mode, where the tips were functionalized with the same terminations, was used to measure adhesion forces between the tip and substrate surfaces, to gather fundamental information about the role of these cations in the behavior of organic compounds and the surfaces where they adsorb. Adhesion force between hydrophobic surfaces in 0.5 M NaCl solutions that contained 0.012 M divalent cations did not change, regardless of the ionic potential, that is, the charge per unit radius, of the cation. For systems where one or the other surface was functionalized with carboxylate, -COO(H), mostly in its deprotonated form, -COO-, a reproducible change in the adhesion force was observed for each of the ions. The trend of increasing adhesion force followed the pattern: Na+ ≈ Mg2+ < Sr2+ < Ca2+ < Ba2+, suggesting that ionic potential, thus hydrated radius, controls the interaction. The presence of a -CH3 surface in the asymmetric system leads to lower adhesion forces than in the hydrophilic system, whereas the ionic trend remains the same. Although specific ion effects are felt in both systems, the lower adhesion force in the asymmetric system, compared with the hydrophilic system, implies that the -CH3 surface plays an important role.

12.
Sci Rep ; 8(1): 10689, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29993006

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

13.
Phys Chem Chem Phys ; 20(25): 17226-17233, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29900457

RESUMO

An understanding of the mechanisms that control the adsorption of organic molecules on clay minerals is of interest in several branches of science and industry. Oil production using low salinity injection fluids can increase yields by as much as 40% over standard injection with seawater or formation water. The mechanism responsible for the low salinity response is still debated, but one hypothesis is a change in pore surface wettability. Organic contamination in soil and drinking water aquifers is a challenge for municipal water suppliers and for agriculture. A better understanding is needed for how mineral species, solution composition and pH affect the desorption of low molecular weight organic ligands from clay minerals and consequently their wettability. We used X-ray photoelectron spectroscopy under cryogenic conditions to investigate the in situ composition in the mineral-solution interface region in a series of experiments with a range of pH and ion concentrations. We demonstrate that both chlorite and kaolinite release organic molecules under conditions relevant for low salinity water flooding. This release increases with a higher solution pH but is only slightly affected by the character of the organic ligand. This is consistent with the observation that low salinity enhanced oil recovery correlates with the presence of chlorite and kaolinite. Our results indicate that the pore surface charge and salinity of formation water and injection fluids are key parameters in determining the low salinity response. In general, our results imply that clay mineral surface charge influences the composition in the interface through an affinity for organic molecules.

14.
Langmuir ; 34(24): 7011-7020, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29792031

RESUMO

The interfacial free energy of a solid, which determines its adsorption properties, depends on interactions between the surface and the fluid. A change in surface composition can completely change the behavior of the solid. Decades of work have explored adsorption and its effects at solid-fluid interfaces from the macroscopic perspective and using molecular modeling, so the concept of the electric double layer (EDL) is well established in the community. However, direct, molecular level, experimental observations of the composition within the interface region, and its change with time and conditions, are not abundant. We used cryogenic X-ray photoelectron spectroscopy (cryoXPS) to observe the composition in the clay mineral-solution interface region as a function of bulk solution composition, on illite and chlorite in MgCl2 and CaCl2 electrolytes, over a range of concentrations (1-125 mM), in situ, on vitrified samples. These samples were prepared from very thin smears of centrifuged wet paste that were instantaneously chilled to liquid N2 temperature. They preserved the adsorbed solution in its amorphous state, maintaining the location of the ions and water with respect to the solid, without the disruption that occurs during drying or the rearrangement that results as water crystallizes during freezing. With decreasing ionic strength, we could directly monitor the loss of negative charge in the interface region, producing an anion deficiency, as predicted by theory. The Cl-/Me2+ ratio dropped below 1 for chlorite at 12-25 mM MeCl2 and for illite at 75-100 mM. In addition to better understanding of clay mineral behavior in solution, this work demonstrates that only those clay minerals where surface charge density is the same or lower than that for chlorite contribute to a low salinity enhanced oil recovery response (LS EOR). This explains many of the contradictory results from studies about the role of clay minerals in LS EOR.

15.
Nat Commun ; 9(1): 1578, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29679006

RESUMO

Understanding mineral growth mechanism is a key to understanding biomineralisation, fossilisation and diagenesis. The presence of trace compounds affect the growth and dissolution rates and the form of the crystals produced. Organisms use ions and organic molecules to control the growth of hard parts by inhibition and enhancement. Calcite growth in the presence of Mg2+ is a good example. Its inhibiting role in biomineralisation is well known, but the controlling mechanisms are still debated. Here, we use a microkinetic model for a series of inorganic and organic inhibitors of calcite growth. With one, single, nonempirical parameter per inhibitor, i.e. its adsorption energy, we can quantitatively reproduce the experimental data and unambiguously establish the inhibition mechanism(s) for each inhibitor. Our results provide molecular scale insight into the processes of crystal growth and biomineralisation, and open the door for logical design of mineral growth inhibitors through computational methods.

16.
Sci Rep ; 8(1): 5693, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29632315

RESUMO

The dissolution of porous materials in a flow field controls the fluid pathways through rocks and soils and shapes the morphology of landscapes. Identifying the dissolution front, the interface between the reactive and the unreactive volumes in a dissolving medium, is a prerequisite for describing dissolution-induced structure emergence and transformation. Despite its fundamental importance, the report on the dynamics of a dissolution front in an evolving natural microstructure is scarce. Here we show an unexpected, spontaneous migration of the dissolution front against the flow direction. This retraction stems from infiltration instability induced surface generation, which leads to an increase in reactive surface area when a porous medium dissolves in an imposing flow field. There is very good agreement between observations made with in situ, X-ray tomography and model predictions. Both show that the value of reactive surface area reflects a balance between flow-dependent surface generation and destruction, i.e. the "dry" geometric surface area of a porous material, measured without a flow field, is not necessarily the upper limit of its reactive surface area when in contact with reactive flow. This understanding also contributes to reconciling the discrepancies between field and laboratory derived solid-fluid reaction kinetics.

17.
Phys Chem Chem Phys ; 20(10): 7140-7147, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29479597

RESUMO

We performed density functional theory calculations to investigate the effect of solvation and temperature on the adsorption of small organic molecules on calcite. The Conductor like Screening Model for Real Solvents (COSMO-RS) solvation model was used to describe a multicomponent mixture consisting of both hydrophobic and hydrophilic phases. The results demonstrate that the combination of solvation and temperature significantly influences adsorption, with the effect of temperature dominating over the effect of solvation. At 25 °C, carboxylic acids and methanol are stable on calcite with free energy of adsorption <0 in the hydrophobic phase. None of the molecules considered in this study remain on the surface in the hydrophilic phase.

18.
Chem Commun (Camb) ; 53(94): 12700-12703, 2017 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-29134988

RESUMO

We measured the binding energy and bonding parameters between model nucleotide functional groups and model clay mineral surfaces in solutions of acidic pH. We demonstrate that basal surfaces of clay minerals interact most strongly with nucleobases and show that the adsorption of the phosphate group to clay edges could facilitate polymerisation. Our results suggest that Al- and Fe-rich edge sites behave similarly in nucleotide polymerisation through change of the phosphodiester bond strength. We present an internally consistent set of thermodynamic parameters that represent the nucleotide-clay mineral system.

19.
Sci Rep ; 7(1): 10944, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887490

RESUMO

Enhanced oil recovery using low-salinity solutions to sweep sandstone reservoirs is a widely-practiced strategy. The mechanisms governing this remain unresolved. Here, we elucidate the role of Ca2+ by combining chemical force microscopy (CFM) and molecular dynamics (MD) simulations. We probe the influence of electrolyte composition and concentration on the adsorption of a representative molecule, positively-charged alkylammonium, at the aqueous electrolyte/silica interface, for four electrolytes: NaCl, KCl, MgCl2, and CaCl2. CFM reveals stronger adhesion on silica in CaCl2 compared with the other electrolytes, and shows a concentration-dependent adhesion not observed for the other electrolytes. Using MD simulations, we model the electrolytes at a negatively-charged amorphous silica substrate and predict the adsorption of methylammonium. Our simulations reveal four classes of surface adsorption site, where the prevalence of these sites depends only on CaCl2 concentration. The sites relevant to strong adhesion feature the O- silica site and Ca2+ in the presence of associated Cl-, which gain prevalence at higher CaCl2 concentration. Our simulations also predict the adhesion force profile to be distinct for CaCl2 compared with the other electrolytes. Together, these analyses explain our experimental data. Our findings indicate in general how silica wettability may be manipulated by electrolyte concentration.

20.
Sci Rep ; 7(1): 7592, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790315

RESUMO

The structure and the strength of organic compound adsorption on mineral surfaces are of interest for a number of industrial and environmental applications, oil recovery, CO2 storage and contamination remediation. Biomineralised calcite plays an essential role in the function of many organisms that control crystal growth with organic macromolecules. Carbonate rocks, composed almost exclusively of calcite, host drinking water aquifers and oil reservoirs. In this study, we examined the ordering behaviour of several organic compounds and the thickness of the adsorbed layers formed on calcite {10.4} surfaces. We used X-ray reflectivity (XRR) to study calcite {10.4} surfaces that were prepared in three alcohols: methanol, isopropanol and pentanol and one carboxylic acid: octanoic acid. All molecules adsorbed in self-assembled layers, where thickness depended on the density and the length of the molecule. For methanol and isopropanol, molecular dynamic simulations (MD) provided complementary information, which allowed us to develop a surface model. Branching in isopropanol induced slightly less ordering because of the additional degree of freedom. Pentanol and octanoic acid adsorbed as single monolayers. The results of this work indicate that adhered organic compounds from the surrounding environment can affect the surface behaviour, depending on properties of the organic compound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...