Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
New Phytol ; 238(3): 1278-1293, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36707920

RESUMO

Species delimitation is challenging in lineages that exhibit both high plasticity and introgression. This challenge can be compounded by collection biases, which may downweight specimens morphologically intermediate between traditional species. Additionally, mismatch between named species and observable phenotypes can compromise species conservation. We studied the species boundaries of Quercus acerifolia, a tree endemic to Arkansas, U.S. We performed morphometric analyses of leaves and acorns from 527 field and 138 herbarium samples of Q. acerifolia and its close relatives, Q. shumardii and Q. rubra. We employed two novel approaches: sampling ex situ collections to detect phenotypic plasticity caused by environmental variation and comparing random field samples with historical herbarium samples to identify collection biases that might undermine species delimitation. To provide genetic evidence, we also performed molecular analyses on genome-wide SNPs. Quercus acerifolia shows distinctive morphological, ecological, and genomic characteristics, rejecting the hypothesis that Q. acerifolia is a phenotypic variant of Q. shumardii. We found mismatches between traditional taxonomy and phenotypic clusters. We detected underrepresentation of morphological intermediates in herbarium collections, which may bias species discovery and recognition. Rare species conservation requires considering and addressing taxonomic problems related to phenotypic plasticity, mismatch between taxonomy and morphological clusters, and collection biases.


Assuntos
Acer , Quercus , Quercus/genética , Fenótipo , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...