Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Front Microbiol ; 14: 1045587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138595

RESUMO

Enterovirus A71 (EV-A71) can elicit a wide variety of human diseases such as hand, foot, and mouth disease and severe or fatal neurological complications. It is not clearly understood what determines the virulence and fitness of EV-A71. It has been observed that amino acid changes in the receptor binding protein, VP1, resulting in viral binding to heparan sulfate proteoglycans (HSPGs) may be important for the ability of EV-A71 to infect neuronal tissue. In this study, we identified that the presence of glutamine, as opposed to glutamic acid, at VP1-145 is key for viral infection in a 2D human fetal intestinal model, consistent with previous findings in an airway organoid model. Moreover, pre-treatment of EV-A71 particles with low molecular weight heparin to block HSPG-binding significantly reduced the infectivity of two clinical EV-A71 isolates and viral mutants carrying glutamine at VP1-145. Our data indicates that mutations in VP1 leading to HSPG-binding enhances viral replication in the human gut. These mutations resulting in increased production of viral particles at the primary replication site could lead to a higher risk of subsequent neuroinfection. Importance: With the near eradication of polio worldwide, polio-like illness (as is increasingly caused by EV-A71 infections) is of emerging concern. EV-A71 is indeed the most neurotropic enterovirus that poses a major threat globally to public health and specifically in infants and young children. Our findings will contribute to the understanding of the virulence and the pathogenicity of this virus. Further, our data also supports the identification of potential therapeutic targets against severe EV-A71 infection especially among infants and young children. Furthermore, our work highlights the key role of HSPG-binding mutations in the disease outcome of EV-A71. Additionally, EV-A71 is not able to infect the gut (the primary replication site in humans) in traditionally used animal models. Thus, our research highlights the need for human-based models to study human viral infections.Graphical Abstract.

2.
Life Sci Alliance ; 5(12)2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35926873

RESUMO

Human milk is important for antimicrobial defense in infants and has well demonstrated antiviral activity. We evaluated the protective ability of human milk against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in a human fetal intestinal cell culture model. We found that, in this model, human milk blocks SARS-CoV-2 replication, irrespective of the presence of SARS-CoV-2 spike-specific antibodies. Complete inhibition of both enveloped Middle East respiratory syndrome coronavirus and human respiratory syncytial virus infections was also observed, whereas no inhibition of non-enveloped enterovirus A71 infection was seen. Transcriptome analysis after 24 h of the intestinal monolayers treated with human milk showed large transcriptomic changes from human milk treatment, and subsequent analysis suggested that <i>ATP1A1</i> down-regulation by milk might be of importance. Inhibition of ATP1A1 blocked SARS-CoV-2 infection in our intestinal model, whereas no effect on EV-A71 infection was seen. Our data indicate that human milk has potent antiviral activity against particular (enveloped) viruses by potentially blocking the ATP1A1-mediated endocytic process.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Antivirais/farmacologia , Humanos , Leite Humano
3.
Open Res Eur ; 2: 4, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37645309

RESUMO

Background: The outbreak of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered the rapid and successful development of vaccines to help mitigate the effect of COVID-19 and circulation of the virus. Vaccine efficacy is often defined as capacity of vaccines to prevent (severe) disease. However, the efficacy to prevent transmission or infectiousness is equally important at a population level. This is not routinely assessed in clinical trials. Preclinical vaccine trials provide a wealth of information about the presence and persistence of viruses in different anatomical sites. Methods: We systematically reviewed all available preclinical SARS-CoV-2 candidate vaccine studies where non-human primates were challenged after vaccination (PROSPERO registration: CRD42021231199). We extracted the underlying data, and recalculated the reduction in viral shedding. We summarized the efficacy of  vaccines to reduce viral RNA shedding after challenge by standardizing and stratifying the results by different anatomical sites and diagnostic methods. We considered shedding of viral RNA as a proxy measure for infectiousness. Results: We found a marked heterogeneity between the studies in the experimental design and the assessment of the outcomes. The best performing vaccine candidate per study caused only low (6 out of 12 studies), or moderate (5 out of 12) reduction of viral genomic RNA, and low (5 out of 11 studies) or moderate (3 out of 11 studies) reduction of subgenomic RNA in the upper respiratory tract, as assessed with nasal samples. Conclusions: Since most of the tested vaccines only triggered a low or moderate reduction of viral RNA in the upper respiratory tract, we need to consider that most SARS-CoV-2 vaccines that protect against disease might not fully protect against infectiousness and vaccinated individuals might still contribute to SARS-CoV-2 transmission. Careful assessment of secondary attack rates from vaccinated individuals is warranted. Standardization in design and reporting of preclinical trials is necessary.

4.
NPJ Vaccines ; 6(1): 94, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326330

RESUMO

Sabin-strain oral polio vaccines (OPV) can, in rare instances, cause disease in recipients and susceptible contacts or evolve to become circulating vaccine-derived strains with the potential to cause outbreaks. Two novel type 2 OPV (nOPV2) candidates were designed to stabilize the genome against the rapid reversion that is observed following vaccination with Sabin OPV type 2 (mOPV2). Next-generation sequencing and a modified transgenic mouse neurovirulence test were applied to shed nOPV2 viruses from phase 1 and 2 studies and shed mOPV2 from a phase 4 study. The shed mOPV2 rapidly reverted in the primary attenuation site (domain V) and increased in virulence. In contrast, the shed nOPV2 viruses showed no evidence of reversion in domain V and limited or no increase in neurovirulence in mice. Based on these results and prior published data on safety, immunogenicity, and shedding, the nOPV2 viruses are promising alternatives to mOPV2 for outbreak responses.

5.
Nutrients ; 13(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068142

RESUMO

BACKGROUND: Since the outbreak of coronavirus disease 2019 (COVID-19), many put their hopes in the rapid availability of effective immunizations. Human milk, containing antibodies against syndrome coronavirus 2 (SARS-CoV-2), may serve as means of protection through passive immunization. We aimed to determine the presence and pseudovirus neutralization capacity of SARS-CoV-2 specific IgA in human milk of mothers who recovered from COVID-19, and the effect of pasteurization on these antibodies. METHODS: This prospective case control study included lactating mothers, recovered from (suspected) COVID-19 and healthy controls. Human milk and serum samples were collected. To assess the presence of SARS-CoV-2 antibodies we used multiple complementary assays, namely ELISA with the SARS-CoV-2 spike protein (specific for IgA and IgG), receptor binding domain (RBD) and nucleocapsid (N) protein for IgG in serum, and bridging ELISA with the SARS-CoV-2 RBD and N protein for specific Ig (IgG, IgM and IgA in human milk and serum). To assess the effect of pasteurization, human milk was exposed to Holder (HoP) and High Pressure Pasteurization (HPP). RESULTS: Human milk contained abundant SARS-CoV-2 antibodies in 83% of the proven cases and in 67% of the suspected cases. Unpasteurized milk with and without these antibodies was found to be capable of neutralizing a pseudovirus of SARS-CoV-2 in (97% and 85% of the samples respectively). After pasteurization, total IgA antibody levels were affected by HoP, while SARS-CoV-2 specific antibody levels were affected by HPP. Pseudovirus neutralizing capacity of the human milk samples was only retained with the HPP approach. No correlation was observed between milk antibody levels and neutralization capacity. CONCLUSIONS: Human milk from recovered COVID-19-infected mothers contains SARS-CoV-2 specific antibodies which maintained neutralization capacity after HPP. All together this may represent a safe and effective immunization strategy after HPP.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Lactação , Leite Humano/imunologia , Pasteurização , SARS-CoV-2/imunologia , Adulto , Feminino , Humanos
6.
NPJ Vaccines ; 6(1): 39, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741993

RESUMO

Previously we have shown that a single dose of recombinant adenovirus serotype 26 (Ad26) vaccine expressing a prefusion stabilized SARS-CoV-2 spike antigen (Ad26.COV2.S) is immunogenic and provides protection in Syrian hamster and non-human primate SARS-CoV-2 infection models. Here, we investigated the immunogenicity, protective efficacy, and potential for vaccine-associated enhanced respiratory disease (VAERD) mediated by Ad26.COV2.S in a moderate disease Syrian hamster challenge model, using the currently most prevalent G614 spike SARS-CoV-2 variant. Vaccine doses of 1 × 109 and 1 × 1010 VP elicited substantial neutralizing antibodies titers and completely protected over 80% of SARS-CoV-2 inoculated Syrian hamsters from lung infection and pneumonia but not upper respiratory tract infection. A second vaccine dose further increased neutralizing antibody titers that was associated with decreased infectious viral load in the upper respiratory tract after SARS-CoV-2 challenge. Suboptimal non-protective immune responses elicited by low-dose A26.COV2.S vaccination did not exacerbate respiratory disease in SARS-CoV-2-inoculated Syrian hamsters with breakthrough infection. In addition, dosing down the vaccine allowed to establish that binding and neutralizing antibody titers correlate with lower respiratory tract protection probability. Overall, these preclinical data confirm efficacy of a one-dose vaccine regimen with Ad26.COV2.S in this G614 spike SARS-CoV-2 virus variant Syrian hamster model, show the added benefit of a second vaccine dose, and demonstrate that there are no signs of VAERD under conditions of suboptimal immunity.

7.
NPJ Vaccines ; 6(1): 40, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742000

RESUMO

Human infections with avian H7N9 subtype influenza viruses are a major public health concern and vaccines against H7N9 are urgently needed for pandemic preparedness. In early 2013, novel H7N9 influenza viruses emerged in China that caused about 1600 human cases of infection with a high associated case fatality rate. In this study, two H7N9 split virion vaccines with or without AS03 adjuvant were tested in the naive ferret model. Serological analyses demonstrated that homologous hemagglutination inhibition and microneutralization antibody titers were detectable in the ferrets after the first immunization with the AS03-adjuvanted vaccines that were further boosted by the second immunization. In addition, heterologous antibody titers against older H7 subtype viruses of the North American lineage (H7N7, H7N3) and newer H7 subtype viruses of the Eurasian lineage (H7N9) were detected in the animals receiving the AS03-adjuvanted vaccines. Animals receiving two immunizations of the AS03-adjuvanted vaccines were protected from weight loss and fever in the homologous challenge study and had no detectable virus in throat or lung samples. In addition, microscopic examination post-challenge showed animals immunized with the AS03-adjuvanted vaccines had the least signs of lung injury and inflammation, consistent with the greater relative efficacy of the adjuvanted vaccines. In conclusion, this study demonstrated that the AS03-adjuvanted H7N9 vaccines elicited high levels of homologous and heterologous antibodies and protected against H7N9 virus damage post-challenge.

8.
Emerg Microbes Infect ; 10(1): 1-7, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33356979

RESUMO

Transmission of severe acute respiratory coronavirus-2 (SARS-CoV-2) between livestock and humans is a potential public health concern. We demonstrate the susceptibility of rabbits to SARS-CoV-2, which excrete infectious virus from the nose and throat upon experimental inoculation. Therefore, investigations on the presence of SARS-CoV-2 in farmed rabbits should be considered.


Assuntos
COVID-19/transmissão , Coelhos/virologia , SARS-CoV-2/isolamento & purificação , Enzima de Conversão de Angiotensina 2/fisiologia , Animais , COVID-19/etiologia , COVID-19/veterinária , Suscetibilidade a Doenças/veterinária , Feminino , Células HEK293 , Humanos , Eliminação de Partículas Virais
9.
Nature ; 586(7830): 509-515, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32967005

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Modelos Animais de Doenças , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/prevenção & controle , Animais , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Furões/virologia , Humanos , Mesocricetus/virologia , Camundongos , Pneumonia Viral/imunologia , Primatas/virologia , SARS-CoV-2 , Vacinas Virais/imunologia
10.
Vaccine ; 38(40): 6280-6290, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32741671

RESUMO

During a pandemic, the availability of specific pathogen free chicken eggs is a major bottleneck for up-scaling response to the demand for influenza vaccine. This has led us to explore the use of Madin-Darby Canine Kidney (MDCK) cells for the manufacture of live attenuated influenza vaccine (LAIV) that provides production flexibility and speed. The present study reports the comparison of the immunogenicity and efficacy of two MDCK-based LAIVs against two egg-based LAIVs prepared from the same pandemic potential strains of H5 and H7 subtypes after a single dose of the vaccine followed by a challenge with a homologous wild type strain. The vaccine strains have been generated by classical method of reassortment using the A/Leningrad/134/17/57 master donor strain. Additionally, a prime-boost regimen of the MDCK-based vaccine followed by a challenge with a homologous wild type strain for H5 and H7 immunized ferrets and also a heterologous wild type strain for the H5 immunized animals was studied. No difference in the hemagglutination inhibition and virus neutralization antibody titers against the homologous virus was observed following a single dose of either egg-based or MDCK-based H5 and H7 LAIV vaccine. A second dose of MDCK-based vaccine significantly boosted antibody titers in the vaccinated animals. Both a single dose or two doses of LAIV provided complete protection from lower respiratory tract infection and resulted in a significant reduction in the virus titers recovered from the throat, nasal turbinates and lungs after challenge with the homologous wild type strain. Protection from a challenge with a heterologous strain of H5 was also observed after two doses of the MDCK-based LAIVs. This data strongly supports the use of MDCK as a substrate for the manufacture of LAIV which ensures reliable quality, safety, production flexibility, speed and breadth of protection, features that are highly critical during a pandemic.


Assuntos
Vacinas contra Influenza , Animais , Anticorpos Antivirais , Cães , Furões , Células Madin Darby de Rim Canino , Vacinas Atenuadas
11.
Emerg Microbes Infect ; 9(1): 1080-1091, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32471334

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is a WHO priority pathogen for which vaccines are urgently needed. Using an immune-focusing approach, we created self-assembling particles multivalently displaying critical regions of the MERS-CoV spike protein ─fusion peptide, heptad repeat 2, and receptor binding domain (RBD) ─ and tested their immunogenicity and protective capacity in rabbits. Using a "plug-and-display" SpyTag/SpyCatcher system, we coupled RBD to lumazine synthase (LS) particles producing multimeric RBD-presenting particles (RBD-LS). RBD-LS vaccination induced antibody responses of high magnitude and quality (avidity, MERS-CoV neutralizing capacity, and mucosal immunity) with cross-clade neutralization. The antibody responses were associated with blocking viral replication and upper and lower respiratory tract protection against MERS-CoV infection in rabbits. This arrayed multivalent presentation of the viral RBD using the antigen-SpyTag/LS-SpyCatcher is a promising MERS-CoV vaccine candidate and this platform may be applied for the rapid development of vaccines against other emerging viruses such as SARS-CoV-2.


Assuntos
Formação de Anticorpos , Apresentação de Antígeno , Infecções por Coronavirus/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos , Sítios de Ligação , Infecções por Coronavirus/prevenção & controle , Ensaio de Imunoadsorção Enzimática , Feminino , Vetores Genéticos , Células HEK293 , Humanos , Imunogenicidade da Vacina , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Testes de Neutralização , Ligação Proteica , Domínios Proteicos , Coelhos , Glicoproteína da Espícula de Coronavírus/biossíntese , Replicação Viral
12.
Viruses ; 11(4)2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022948

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) transmission from dromedaries to humans has resulted in major outbreaks in the Middle East. Although some other livestock animal species have been shown to be susceptible to MERS-CoV, it is not fully understood why the spread of the virus in these animal species has not been observed in the field. In this study, we used rabbits to further characterize the transmission potential of MERS-CoV. In line with the presence of MERS-CoV receptor in the rabbit nasal epithelium, high levels of viral RNA were shed from the nose following virus inoculation. However, unlike MERS-CoV-infected dromedaries, these rabbits did not develop clinical manifestations including nasal discharge and did shed only limited amounts of infectious virus from the nose. Consistently, no transmission by contact or airborne routes was observed in rabbits. Our data indicate that despite relatively high viral RNA levels produced, low levels of infectious virus are excreted in the upper respiratory tract of rabbits as compared to dromedary camels, thus resulting in a lack of viral transmission.


Assuntos
Infecções por Coronavirus/transmissão , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Nariz/virologia , Coelhos/virologia , Organismos Livres de Patógenos Específicos , Animais , Anticorpos Antivirais/sangue , Camelus/virologia , Infecções por Coronavirus/virologia , Reservatórios de Doenças/virologia , Feminino , Masculino , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , RNA Viral/análise , Sistema Respiratório/virologia , Eliminação de Partículas Virais
13.
Vaccine ; 36(46): 6944-6952, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30322745

RESUMO

A ferret challenge study was conducted to address the efficacy of the egg-based and Madin-Darby canine kidney (MDCK)-based live attenuated influenza vaccine (LAIV) strains. Vaccines derived as 6:2 reassortants from the A/Leningrad/134/17/57 master donor strain and the HA and NA components from the A/California/07/2009 (A/Cal)- and A/Michigan/45/2015 (A/Mich)-like strains of type A H1N1 influenza virus were used in the study. Monovalent, trivalent and quadrivalent formulations of the LAIV containing either of the two H1N1 strains were analysed. A total of ten groups of six animals each were immunised intranasally (i.n.) with a single dose of 0.5-ml vaccine formulation or placebo and challenged on day 28 with the homologous wild-type A/Cal or A/Mich strain. Immune response post immunisation and virus replication post challenge were studied. Both the strains derived from embryonated eggs or MDCK cells, irrespective of the vaccine valency, were capable of rendering complete protection from virus replication in the lung. The A/Mich vaccine strain showed higher immune titres and efficacy than the A/Cal vaccine strain in all the vaccine formulations. The haemagglutination inhibition and virus neutralisation antibody titres were induced, and the reduction in the virus load in the respiratory tract was observed to be higher in animals treated with the monovalent formulation compared to the trivalent and quadrivalent formulations. Overall, it appears that the monovalent formulations render better protection from infection and would therefore be the best candidate during a pandemic.


Assuntos
Imunogenicidade da Vacina , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Administração Intranasal , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Feminino , Furões , Testes de Inibição da Hemaglutinação , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Testes de Neutralização , Placebos/administração & dosagem , Vírus Reordenados/imunologia , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Resultado do Tratamento , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Carga Viral
14.
PLoS One ; 13(7): e0200849, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30024940

RESUMO

Influenza viruses can cause severe life threatening infections in high-risk patients, including young children, the elderly and patients with compromised immunity due to underlying medical conditions or immunosuppressive treatment. The impaired immunity of these patients causes prolonged virus infection and combined with antiviral treatment facilitates the emergence of viruses with resistance mutations. The diverse nature of their immune status makes them a challenging group to study the impact of influenza virus infection and the efficacy of antiviral therapy. Immunocompromised ferrets may represent a suitable animal model to assess influenza virus infection and antiviral treatment strategies in immunocompromised hosts. Here, ferrets were given a daily oral solution of mycophenolate mofetil, tacrolimus and prednisolone sodium phosphate to suppress their immune system. Groups of immunocompromised and immunocompetent ferrets were inoculated with an A/H3N2 influenza virus and were subsequently treated with Oseltamivir or left untreated. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) was performed on the throat and nose specimens to study virus replication during the course of infection. All immunocompromised ferrets had prolonged presence of viral RNA and a higher total amount of virus shedding compared to the immunocompetent ferrets. Although Oseltamivir reduced the total amount of virus shedding from the nose and throat of treated ferrets, it also resulted in the emergence of the neuraminidase R292K resistance substitution in all these animals, as determined by mutation specific RT-PCR and next-generation sequencing. No additional mutations that could be associated with the emergence of the R292K resistance mutation were detected. The immunocompromised ferret model can be used to study A/H3N2 virus shedding and is a promising model to study new antiviral strategies and the emergence of antiviral resistance in immunocompromised hosts.


Assuntos
Antivirais/uso terapêutico , Vírus da Influenza A Subtipo H3N2/patogenicidade , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Animais , Farmacorresistência Viral/genética , Furões , Hospedeiro Imunocomprometido , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Viruses ; 10(1)2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29301313

RESUMO

Human respiratory syncytial virus (HRSV) causes substantial morbidity and mortality in vulnerable patients, such as the very young, the elderly, and immunocompromised individuals of any age. Nosocomial transmission of HRSV remains a serious challenge in hospital settings, with intervention strategies largely limited to infection control measures, including isolation of cases, high standards of hand hygiene, cohort nursing, and use of personal protective equipment. No vaccines against HRSV are currently available, and treatment options are largely supportive care and expensive monoclonal antibody or antiviral therapy. The limitations of current animal models for HRSV infection impede the development of new preventive and therapeutic agents, and the assessment of their potential for limiting HRSV transmission, in particular in nosocomial settings. Here, we demonstrate the efficient transmission of HRSV from immunocompromised ferrets to both immunocompromised and immunocompetent contact ferrets, with pathological findings reproducing HRSV pathology in humans. The immunocompromised ferret-HRSV model represents a novel tool for the evaluation of intervention strategies against nosocomial transmission of HRSV.


Assuntos
Hospedeiro Imunocomprometido , Infecções por Vírus Respiratório Sincicial/transmissão , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano , Animais , Linhagem Celular , Efeito Citopatogênico Viral , Modelos Animais de Doenças , Furões , Humanos , Masculino , RNA Viral , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/imunologia , Carga Viral , Replicação Viral
16.
Vaccine ; 35(24): 3249-3255, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28479181

RESUMO

Carbohydrate fatty acid sulphate esters (CFASEs) formulated in a squalane-in-water emulsion are effective adjuvants for humoral responses to a wide range of antigens in various animal species but rise in body temperature and local reactions albeit mild or minimal hampers application in humans. In rabbits, body temperature increased 1°C one day after intramuscular (IM) injection, which returned to normal during the next day. The effect increased with increasing dose of CFASE but not with the number of injections (up to 5). Antigen enhanced the rise in body temperature after booster immunization (P<0.01) but not after priming. Synthetic CFASEs are mixtures of derivatives containing no sulphate, one or multiple sulphate groups and the monosulphate derivatives (CMS) were isolated, incorporated in a squalane in-water emulsion and investigated. In contrast to CFASE, CMS adjuvant did not generate rise in body temperature or local reactions in rabbits immunized with a purified, recombinant malaria chimeric antigen R0.10C. In comparison to alum, CMS adjuvant revealed approximately 30-fold higher antibody titres after the first and >100-fold after the second immunization. In ferrets immunized with 7.5µg of inactivated influenza virus A/H7N9, CMS adjuvant gave 100-fold increase in HAI antibody titres after the first and 25-fold after the second immunisation, which were 10-20-fold higher than with the MF59-like AddaVax adjuvant. In both models, a single immunisation with CMS adjuvant revealed similar or higher titres than two immunisations with either benchmark, without detectable systemic and local adverse effects. Despite striking chemical similarities with monophospholipid A (MPL), CMS adjuvant did not activate human TLR4 expressed on HEK cells. We concluded that the synthetic CMS adjuvant is a promising candidate for poor immunogens and single-shot vaccines and that rise in body temperature, local reactions or activation of TLR4 is not a pre-requisite for high adjuvanticity.


Assuntos
Adjuvantes Imunológicos/efeitos adversos , Adjuvantes Imunológicos/química , Ésteres/efeitos adversos , Ésteres/imunologia , Imunidade Humoral , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/síntese química , Animais , Anticorpos Antivirais/sangue , Temperatura Corporal , Carboidratos/administração & dosagem , Carboidratos/efeitos adversos , Carboidratos/química , Carboidratos/imunologia , Composição de Medicamentos , Ésteres/administração & dosagem , Ésteres/química , Ácidos Graxos/administração & dosagem , Ácidos Graxos/efeitos adversos , Ácidos Graxos/química , Ácidos Graxos/imunologia , Furões/imunologia , Células HEK293 , Testes de Inibição da Hemaglutinação , Humanos , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Injeções Intramusculares , Lipídeo A/análogos & derivados , Lipídeo A/química , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Polissorbatos/administração & dosagem , Coelhos , Esqualeno/administração & dosagem , Esqualeno/imunologia , Receptor 4 Toll-Like/imunologia , Vacinação
17.
J Infect Dis ; 214(4): 516-24, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27448390

RESUMO

BACKGROUND: Influenza A viruses can replicate in the olfactory mucosa and subsequently use the olfactory nerve to enter the central nervous system (CNS). It is currently unknown whether intervention strategies are able to reduce or prevent influenza virus replication within the olfactory mucosa and subsequent spread to the CNS. Therefore, we tested the efficacy of homologous vaccination and prophylactic oseltamivir to prevent H5N1 virus CNS invasion via the olfactory nerve in our ferret model. METHODS: Ferrets were vaccinated intramuscularly or received oseltamivir (5 mg/kg twice daily) prophylactically before intranasal inoculation of highly pathogenic H5N1 virus (A/Indonesia/05/2005) and were examined using virology and pathology. RESULTS: Homologous vaccination reduced H5N1 virus replication in the olfactory mucosa and prevented subsequent virus spread to the CNS. However, prophylactic oseltamivir did not prevent H5N1 virus replication in the olfactory mucosa sufficiently, resulting in CNS invasion via the olfactory nerve causing a severe meningoencephalitis. CONCLUSIONS: Within our ferret model, vaccination is more effective than prophylactic oseltamivir in preventing CNS invasion by H5N1 virus via the olfactory nerve. This study highlights the importance of including the olfactory mucosa, olfactory nerve, and CNS tissues in future vaccine and antiviral studies, especially for viruses with a known neurotropic potential.


Assuntos
Antivirais/administração & dosagem , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Vacinas contra Influenza/administração & dosagem , Meningoencefalite/prevenção & controle , Infecções por Orthomyxoviridae/complicações , Oseltamivir/administração & dosagem , Animais , Quimioprevenção/métodos , Modelos Animais de Doenças , Feminino , Furões , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/imunologia , Injeções Intramusculares , Nervo Olfatório/virologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Resultado do Tratamento
18.
Viruses ; 8(6)2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27314379

RESUMO

Human respiratory syncytial virus (HRSV) is an important cause of severe respiratory tract disease in immunocompromised patients. Animal models are indispensable for evaluating novel intervention strategies in this complex patient population. To complement existing models in rodents and non-human primates, we have evaluated the potential benefits of an HRSV infection model in ferrets (Mustela putorius furo). Nine- to 12-month-old HRSV-seronegative immunocompetent or immunocompromised ferrets were infected with a low-passage wild-type strain of HRSV subgroup A (105 TCID50) administered by intra-tracheal or intra-nasal inoculation. Immune suppression was achieved by bi-daily oral administration of tacrolimus, mycophenolate mofetil, and prednisolone. Throat and nose swabs were collected daily and animals were euthanized four, seven, or 21 days post-infection (DPI). Virus loads were determined by quantitative virus culture and qPCR. We observed efficient HRSV replication in both the upper and lower respiratory tract. In immunocompromised ferrets, virus loads reached higher levels and showed delayed clearance as compared to those in immunocompetent animals. Histopathological evaluation of animals euthanized 4 DPI demonstrated that the virus replicated in the respiratory epithelial cells of the trachea, bronchi, and bronchioles. These animal models can contribute to an assessment of the efficacy and safety of novel HRSV intervention strategies.


Assuntos
Modelos Animais de Doenças , Infecções por Vírus Respiratório Sincicial/patologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/patogenicidade , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Animais , Feminino , Furões , Histocitoquímica , Hospedeiro Imunocomprometido , Carga Viral
19.
J Virol ; 89(11): 6131-5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25810539

RESUMO

The ability of Middle East respiratory syndrome coronavirus (MERS-CoV) to infect small animal species may be restricted given the fact that mice, ferrets, and hamsters were shown to resist MERS-CoV infection. We inoculated rabbits with MERS-CoV. Although virus was detected in the lungs, neither significant histopathological changes nor clinical symptoms were observed. Infectious virus, however, was excreted from the upper respiratory tract, indicating a potential route of MERS-CoV transmission in some animal species.


Assuntos
Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/crescimento & desenvolvimento , Animais , Doenças Assintomáticas , Cricetinae , Modelos Animais de Doenças , Feminino , Pulmão/patologia , Pulmão/virologia , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Coelhos , Sistema Respiratório/virologia , Eliminação de Partículas Virais
20.
J Infect Dis ; 211(5): 791-800, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25246535

RESUMO

Since the first reports in early 2013, >440 human cases of infection with avian influenza A(H7N9) have been reported including 122 fatalities. After the isolation of the first A(H7N9) viruses, the nucleotide sequences became publically available. Based on the coding sequence of the influenza virus A/Shanghai/2/2013 hemagglutinin gene, a codon-optimized gene was synthesized and cloned into a recombinant modified vaccinia virus Ankara (MVA). This MVA-H7-Sh2 viral vector was used to immunize ferrets and proved to be immunogenic, even after a single immunization. Subsequently, ferrets were challenged with influenza virus A/Anhui/1/2013 via the intratracheal route. Unprotected animals that were mock vaccinated or received empty vector developed interstitial pneumonia characterized by a marked alveolitis, accompanied by loss of appetite, weight loss, and heavy breathing. In contrast, animals vaccinated with MVA-H7-Sh2 were protected from severe disease.


Assuntos
Portadores de Fármacos , Vetores Genéticos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vaccinia virus/genética , Animais , Modelos Animais de Doenças , Feminino , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Doenças Pulmonares Intersticiais/patologia , Doenças Pulmonares Intersticiais/prevenção & controle , Infecções por Orthomyxoviridae/patologia , Resultado do Tratamento , Vacinação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...