Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 8921, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903632

RESUMO

GDF15 is a distant TGF-ß family member that induces anorexia and weight loss. Due to its function, GDF15 has attracted attention as a potential therapeutic for the treatment of obesity and its associated metabolic diseases. However, the pharmacokinetic and physicochemical properties of GDF15 present several challenges for its development as a therapeutic, including a short half-life, high aggregation propensity, and protease susceptibility in serum. Here, we report the design, characterization and optimization of GDF15 in an Fc-fusion protein format with improved therapeutic properties. Using a structure-based engineering approach, we combined knob-into-hole Fc technology and N-linked glycosylation site mutagenesis for half-life extension, improved solubility and protease resistance. In addition, we identified a set of mutations at the receptor binding site of GDF15 that show increased GFRAL binding affinity and led to significant half-life extension. We also identified a single point mutation that increases p-ERK signaling activity and results in improved weight loss efficacy in vivo. Taken together, our findings allowed us to develop GDF15 in a new therapeutic format that demonstrates better efficacy and potential for improved manufacturability.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 15 de Diferenciação de Crescimento/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Redução de Peso/efeitos dos fármacos , Animais , Células CHO , Cricetulus , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Glicosilação , Humanos , Camundongos , Mutação Puntual , Engenharia de Proteínas
2.
MAbs ; 13(1): 1850395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33459147

RESUMO

We report here the discovery and optimization of a novel T cell retargeting anti-GUCY2C x anti-CD3ε bispecific antibody for the treatment of solid tumors. Using a combination of hybridoma, phage display and rational design protein engineering, we have developed a fully humanized and manufacturable CD3 bispecific antibody that demonstrates favorable pharmacokinetic properties and potent in vivo efficacy. Anti-GUCY2C and anti-CD3ε antibodies derived from mouse hybridomas were first humanized into well-behaved human variable region frameworks with full retention of binding and T-cell mediated cytotoxic activity. To address potential manufacturability concerns, multiple approaches were taken in parallel to optimize and de-risk the two antibody variable regions. These approaches included structure-guided rational mutagenesis and phage display-based optimization, focusing on improving stability, reducing polyreactivity and self-association potential, removing chemical liabilities and proteolytic cleavage sites, and de-risking immunogenicity. Employing rapid library construction methods as well as automated phage display and high-throughput protein production workflows enabled efficient generation of an optimized bispecific antibody with desirable manufacturability properties, high stability, and low nonspecific binding. Proteolytic cleavage and deamidation in complementarity-determining regions were also successfully addressed. Collectively, these improvements translated to a molecule with potent single-agent in vivo efficacy in a tumor cell line adoptive transfer model and a cynomolgus monkey pharmacokinetic profile (half-life>4.5 days) suitable for clinical development. Clinical evaluation of PF-07062119 is ongoing.


Assuntos
Anticorpos Biespecíficos/imunologia , Complexo CD3/imunologia , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Enterotoxina/imunologia , Animais , Anticorpos Biespecíficos/farmacocinética , Anticorpos Biespecíficos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Hibridomas , Macaca fascicularis/imunologia , Macaca fascicularis/metabolismo , Camundongos Endogâmicos BALB C , Neoplasias/imunologia , Neoplasias/metabolismo , Engenharia de Proteínas/métodos , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/farmacocinética , Anticorpos de Cadeia Única/uso terapêutico , Linfócitos T/imunologia , Linfócitos T/metabolismo
3.
CSH Protoc ; 2007: pdb.prot4742, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21357083

RESUMO

INTRODUCTIONThe ammoniacal silver staining method is one of the most sensitive methods used to detect proteins on an SDS-PAGE gel. However, this and other standard silver staining methods are not compatible with mass spectrometry (MS), which is fast becoming the best way to identify proteins isolated on 2D gels. Because the proteins in gels to be analyzed by mass spectroscopy cannot be modified, many of the common sensitizing agents (e.g., glutaraldehyde and strong oxidizing agents) cannot be used. This method is compatible with MALDI and ESI-MS, and it shows an increased ability to deal with semipreparative protein loads without negative staining as compared with other silver staining methods. However, this process is less sensitive than standard silver staining methods.

4.
CSH Protoc ; 2006(5)2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22485939

RESUMO

INTRODUCTIONCoomassie Blue R250 permanently stains membrane-bound proteins and is compatible with PVDF and nitrocellulose membranes, but it is incompatible with nylon membranes. This technique is relatively insensitive, with a detection limit of ~1.5 µg of protein. One drawback of Coomassie Blue staining is that it produces a high background that can make interpretation of results difficult.

5.
CSH Protoc ; 2006(5)2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22485938

RESUMO

INTRODUCTIONBecause Ponceau S is relatively insensitive (~1 µg of protein), only the most abundant proteins will be visible. However, it is a reversible stain that can be removed completely with H(2)O prior to processing the blots. After staining, a soft lead pencil can be used to record the presence of visible proteins and molecular-weight markers, which will help when aligning the proteins detected on the membrane by western analysis with those in a total protein-stained gel or membrane. Ponceau S is compatible with both nitrocellulose and PVDF membranes.

6.
CSH Protoc ; 2006(5)2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22485940

RESUMO

INTRODUCTIONColloidal Gold is the most sensitive staining technique for proteins bound on membranes, detecting as little as 1-3 ng of protein. Protein spots are permanently stained a dark red after incubation with the Colloidal Gold solution. Colloidal Gold staining can detect proteins on both nitrocellulose and PVDF membranes, but it is not recommended for nylon membranes.

7.
CSH Protoc ; 2006(5)2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22485953

RESUMO

INTRODUCTIONFollowing first-dimension IEF and equilibration of the IPG gel strips, the proteins are separated on the basis of their molecular weight in the second dimension on an SDS-PAGE gel. Systems for this separation are available from a variety of suppliers and are commonly found in many protein chemistry laboratories. This protocol describes a method for placement of the IPG strip and gives some recommended electrophoresis conditions for these second-dimension gels.

8.
CSH Protoc ; 2006(5)2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22485958

RESUMO

INTRODUCTIONThis protocol describes a method for rehydration of IPG gel strips in preparation for their use for isoelectric focusing (IEF) on immobilized pH gradient (IPG) gels. Following rehydration, IEF can be performed using either a flatbed unit or a self-contained instrument.

9.
CSH Protoc ; 2006(5)2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22485959

RESUMO

INTRODUCTIONThis protocol describes a method for separating proteins based on their net charge using the technique of isoelectric focusing (IEF) on immobilized pH gradient (IPG) gels. This method serves as the first dimension of the 2D separation. The method described in this protocol utilizes a flatbed unit; however, self-contained instruments for IEF are also available.

10.
CSH Protoc ; 2006(5)2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22485960

RESUMO

INTRODUCTIONThis protocol describes a method for separating proteins based on their net charge using the technique of isoelectric focusing (IEF) on immobilized pH gradient (IPG) gels, providing the first dimension of the 2D separation. In this protocol, the IPG gels are focused using self-contained instruments for IEF. These high-voltage systems allow fewer manipulations of the IPG gels, resulting in less error, strip mix-up, contamination, air contact, or urea crystallization. Because rehydration and IEF can be performed consecutively within a single unit, these two steps can be performed unattended overnight. Finally, faster separations and sharper focusing are possible due to the higher voltage available in these instruments.

11.
CSH Protoc ; 2006(5)2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22485961

RESUMO

INTRODUCTIONThe phosphorylation state of a protein has an important role in the regulation of a wide variety of cellular processes. As a result, there has been a great deal of interest in detecting phosphorylated proteins. The method presented here uses the GelCode phosphoprotein staining kit (Pierce Chemical Company). This method depends on the hydrolysis of the phosphoprotein phosphoester linkage using sodium hydroxide in the presence of calcium ions. The gel containing the newly formed insoluble calcium phosphate is then treated with ammonium molybdate in dilute nitric acid. The resultant insoluble nitrophospho-molybdate complex is stained with Methyl Green. After destaining, the phosphoproteins are colored green to green-blue. The detection limit is in the nanogram range, but depends on the degree of phosphorylation of the protein. This method will detect the phosphoproteins phosvitin and ß-casein in the 40-80 ng/band and 80-160 ng/band range, respectively. The method presented here is for staining minigels. Volumes will need to be increased for larger gels.

12.
CSH Protoc ; 2006(5)2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22485963

RESUMO

INTRODUCTIONFollowing the separation of proteins by IEF, the second dimension is carried out by SDS-PAGE. This protocol details the method for casting single homogeneous SDS-PAGE gels. Homogeneous gels (with the same %T and %C throughout) offer the best resolution for a particular molecular-weight range and are commonly used because they are the easiest to pour reproducibly. The second-dimension gels can be conveniently prepared in three different formats (i.e., sizes): minigels, for use with 7-cm IEF first-dimension gels; standard gels, for use with 11-, 13-, and 18-cm IEF first-dimension gels; and large-format gels, for use with 18- and 24-cm IEF first-dimension gels. All of the gels use a common set of reagents, listed below, but differ slightly in the equipment required.

13.
CSH Protoc ; 2006(5)2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22485964

RESUMO

INTRODUCTIONGradient SDS-PAGE gels provide the best resolution over a wide range of molecular weights, resulting in sharper protein spots, because diffusion is minimized by the decreasing pore size in the gel. However, gradient gels are more difficult to produce reproducibly; thus, they are commonly cast with multiple-gel casters, which allows for an identical set of gels to be produced for an experiment. Presented here is a method for casting gradient gels using a multiple-gel casting system.

14.
CSH Protoc ; 2006(5)2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22485965

RESUMO

INTRODUCTIONThe equilibration step serves to saturate the IPG strip with the SDS buffer system required for the second-dimension separation. The equilibration solution consists of buffer, urea, glycerol, reductant, SDS, and dye. The buffer (50 mM Tris-HCl, pH 8.8) maintains the appropriate pH range for electrophoresis. Urea and glycerol are added to reduce the effects of electroendosmosis, thus helping improve protein transfer from the IPG strip to the second dimension. The reductant (dithiothreitol) ensures that disulfide bridges are broken. SDS ensures that the proteins are denatured and also provides a net negative charge to all proteins. Iodoacetamide, introduced during a second equilibration step, alkylates thiol groups on the proteins, preventing their reoxidation during electrophoresis, and thus reducing streaking and other artifacts in the second-dimension separation. Iodoacetamide also alkylates residual dithiothreitol, preventing point streaking and other silver staining artifacts. Finally, a tracing dye (bromophenol blue) is added to allow the electrophoresis to be monitored during the run.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...