Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Domest Anim ; 58(6): 823-832, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37017149

RESUMO

The influence of the functional food plant chia (Salvia hispanica L.) on reproduction functions and its ability to prevent the negative effects of environmental contaminants has not yet been studied. Our study aimed to examine the effect of chia seed extract alone and in combination with xylene on the markers of proliferation, apoptosis and hormones release by cultured bovine and porcine ovarian granulosa cells. The extract of chia reduced all of the measured parameters in bovine and porcine ovarian cells but had no effect on the proliferation of porcine cells. Xylene, stimulated proliferation and IGF-I release and inhibited the release of progesterone and testosterone but not apoptosis of bovine granulosa cells. It promoted proliferation, apoptosis and progesterone output by porcine cells. Chia mitigated the stimulatory effect of xylene on proliferation but not on other parameters in both species. The present results are the first demonstration of a direct effect of chia on basic ovarian cell functions. They confirmed a direct influence of xylene on these functions and found a similar stimulatory action of xylene on bovine and porcine ovarian cell proliferation. The present observations demonstrated species-specific differences in the characteristics of xylene influences on ovarian cell apoptosis and secretory activity. Finally, the present results indicate that chia can be a natural protector against the proliferation-stimulating effects of xylene on ovarian cells in both species.


Assuntos
Animais Domésticos , Progesterona , Feminino , Animais , Suínos , Bovinos , Progesterona/farmacologia , Salvia hispanica , Xilenos/farmacologia , Células Cultivadas , Extratos Vegetais/farmacologia , Células da Granulosa , Proliferação de Células
2.
Endocr Regul ; 55(1): 52-60, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33600664

RESUMO

Objectives. The application of nanoparticles is experiencing a rapid growth, but it faces a problem of their toxicity, especially adverse effects on female reproduction. Food and medicinal plants and their isoflavones can be protectors against environmental stressors, but their ability to abate the adverse effects of nanoparticles has not been studied yet. In the present study, we examined the effect of silver (AgNPs) and titanium dioxide (titania, TiO2NPs) nanoparticles alone or in combination with plant phytoestrogens/antioxidants (resveratrol, diosgenin, and quercetin) on accumulation of nanoparticles, and progesterone release by cultured porcine ovarian granulosa cells.Methods. Porcine granulosa cells were incubated in the presence of AgNPs or TiO2NPs (0.1, 1, 10 or 100 µg/ml) alone or in combination with resveratrol, diosgenin or quercetin (10 µg/ml) for 48 h. The accumulation of tested nanoparticles by granulosa cells was assessed under light microscope. Progesterone concentration in culture media was measured by ELISA kit.Results. Cells accumulated both AgNPs and TiO2NPs in a dose-dependent manner. AgNPs, but not TiO2NPs, at highest dose (100 µg/ml) resulted in a destruction of cell monolayer. Both Ag-NPs and TiO2NPs reduced progesterone release. Resveratrol, diosgenin, and quercetin promoted accumulation of both AgNPs and TiO2NPs in ovarian cells and inhibited the progesterone output. Furthermore, resveratrol and diosgenin, but not quercetin, prevented the suppressive action of both AgNPs, and TiO2NPs on progesterone release.Conclusions. These observations (1) demonstrate accumulation of AgNPs and TiO2NPs in ovarian cells, (2) confirm the toxic impact of AgNPs, and TiO2NPs on these cells, (3) confirm the inhibitory effects of plant polyphenols/phytoestrogens on ovarian steroidogenesis, (4) show the ability of these isoflavones to increase the accumulation of AgNPs and TiO2NPs, and (5) show their ability to reduce the suppressive effect of AgNPs and TiO2NPs on ovarian progesterone release. The suppressive effect of AgNPs and TiO2NPs on ovarian functions should be taken into account by their exposition. However, these adverse effects could be mitigated by some plant isoflavones.


Assuntos
Células da Granulosa/metabolismo , Isoflavonas/farmacologia , Nanopartículas Metálicas/toxicidade , Prata/metabolismo , Titânio/metabolismo , Animais , Células Cultivadas , Diosgenina/farmacologia , Feminino , Células da Granulosa/efeitos dos fármacos , Progesterona/metabolismo , Quercetina/farmacologia , Resveratrol/farmacologia , Prata/toxicidade , Suínos , Titânio/toxicidade
3.
Eur J Pharmacol ; 860: 172560, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31344364

RESUMO

Plants, fruits, and vegetables containing the bioflavonoid quercetin are widely used in food, beverages, and medicines; however, the effects of quercetin on reproductive processes and the possible mechanisms of quercetin action require extensive investigation. The aim of our study was to examine the direct effects of quercetin on basic ovarian cell functions and their response to follicle-stimulating hormone (FSH) and insulin-like growth factor I (IGF-I), known hormonal stimulators of reproduction. We analyzed the effects of quercetin alone (0, 1, 10, and 100 ng/ml) on cultured porcine ovarian granulosa cells or isolated ovarian follicles; or of quercetin (10 ng/ml) in combination with FSH (0, 0.01, 0.1, or 1 IU/ml) or IGF-I (0, 1, 10, or 100 ng/ml) on cultured porcine granulosa cells. The expression of proliferative (PCNA, cyclin B1) and apoptotic (BAX) markers, as well as markers for release of progesterone (P4), testosterone (T), and leptin (L), were measured by quantitative immunocytochemistry, Western immunoblotting, RT-qPCR, and EIA/RIA. Addition of quercetin reduced the accumulation of PCNA and cyclin B1, as well as their transcript levels, promoted the accumulation of BAX, decreased the release of P4 and L, and increased the release of T in cultured granulosa cells. In ovarian follicles, quercetin reduced the levels of both P4 and T. Exposure to FSH stimulated PCNA and decreased BAX accumulation, and increased the release of P4, T, and L. Quercetin inhibited and even reversed the effects of FSH. Like FSH, IGF-I also promoted granulosa cell proliferation and suppressed apoptosis. Quercetin did not modify IGF-I effects. These data suggest that the plant molecule quercetin can directly down-regulate basal ovarian cell functions (proliferation, apoptosis, and release of ovarian steroid and peptide hormones) and their response to the stimulatory activity of the upstream hormonal stimulator FSH.


Assuntos
Hormônio Foliculoestimulante/farmacologia , Células da Granulosa/citologia , Células da Granulosa/efeitos dos fármacos , Quercetina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclina B1/metabolismo , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Leptina/metabolismo , Progesterona/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , RNA Mensageiro/genética , Suínos , Testosterona/metabolismo
4.
Anim Reprod Sci ; 205: 44-51, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30981564

RESUMO

The bioflavonoid quercetin is a component of food with numerous biological effects, but its function in reproductive processes and mechanisms in various species remain unclear. The aim of this study was to examine the effect of quercetin on ovarian cells isolated from ovaries of two phytophagous mammalian species (i.e. pigs and cattle). There was analysis of the effect of quercetin (0, 1, 10, and 100 ng/mL) on cultured granulosa cells of pigs and cattle. Proliferation (PCNA) and apoptosis (bax) markers and release of progesterone (P4), testosterone (T), estradiol (E2), and IGF-I were quantified using quantitative immunocytochemistry, enzyme immunoassay, or radioimmunoassay. Treatments with quercetin reduced PCNA and bax accumulation and decreased P4 release from both granulosa cells of pigs and cattle. In cells of pigs, treatment with quercetin reduced T output, however, in cells of cattle quercetin increased T release. In cells of pigs, quercetin reduced IGF-I release. In cells of cattle, quercetin at smaller doses (1 or 10 ng/mL), promoted and at a large dose (100 ng/mL) reduced IGF-I secretions. There was no substantial E2 release from granulosa cells of pigs or cattle. These observations are the first to indicate there is a direct action of quercetin on basic ovarian cell functions (proliferation, apoptosis, and hormones release) which can be species-specific.


Assuntos
Bovinos , Células da Granulosa/efeitos dos fármacos , Quercetina/farmacologia , Suínos , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Estradiol/metabolismo , Feminino , Progesterona/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Especificidade da Espécie , Testosterona/metabolismo , Proteína X Associada a bcl-2
5.
Res Vet Sci ; 119: 308-312, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30086515

RESUMO

Exposure to xylene leads to dysfunction of mammalian female reproduction. Quercetin present in vegetables contribute significantly to their role as health-promoting foods. The effects of xylene and quercetin on ovarian cell function, their interrelationships, and mechanisms of action are insufficiently studied. In this in vitro study, we examined the effects of xylene, quercetin, and xylene/quercetin combination on basic bovine ovarian cell functions, such as proliferation, apoptosis, and hormone release. Furthermore, we examined the protective effect of quercetin against the potential negative effects of xylene. Proliferation and apoptosis were assessed via immunocytochemistry using PCNA and BAX markers. The release of progesterone, testosterone, and insulin-like growth factor (IGF-I) was analysed by EIA/RIA. Xylene stimulated proliferation and IGF-I release, but inhibited progesterone and testosterone release. Quercetin inhibited proliferation, apoptosis, and release of IGF-I, progesterone, and testosterone. When administered with xylene, quercetin prevented the action of xylene on proliferation and IGF-I release, induced the stimulatory action of xylene on apoptosis, and promoted the effect of xylene on release of progesterone but not testosterone. These results demonstrated the actions of both xylene and quercetin on basic ovarian cell functions. Furthermore, they show, that quercetin can either prevented or promote xylene effects on the ovarian cells, which indicates potential usefulness of quercetin for prevention of xylene action on female reproduction.


Assuntos
Ovário/efeitos dos fármacos , Ovário/fisiologia , Quercetina/farmacologia , Xilenos/farmacologia , Animais , Apoptose , Bovinos , Proliferação de Células , Células Cultivadas , Feminino , Células da Granulosa , Fator de Crescimento Insulin-Like I , Progesterona
6.
Anim Reprod Sci ; 182: 77-83, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28528022

RESUMO

Curcuma longa Linn (L.) is a plant widely used in cooking (in curry powder a.o.) and in folk medicine, but its action on reproductive processes and its possible mechanisms of action remain to be investigated. The objective of this study was to examine the direct effects of curcumin, the major Curcuma longa L. molecule, on basic ovarian cell functions such as proliferation, apoptosis, viability and steroidogenesis. Porcine ovarian granulosa cells were cultured with and without curcumin (at doses of 0, 1, 10 and 100µg/ml of medium). Markers of proliferation (accumulation of PCNA) and apoptosis (accumulation of bax) were analyzed by immunocytochemistry. The expression of mRNA for PCNA and bax was detected by RT-PCR. Cell viability was detected by trypan blue exclusion test. Release of steroid hormones (progesterone and testosterone) was measured by enzyme immunoassay (EIA). It was observed that addition of curcumin reduced ovarian cell proliferation (expression of both PCNA and its mRNA), promoted apoptosis (accumulation of both bax and its mRNA), reduced cell viability, and stimulated both progesterone and testosterone release. These observations demonstrate the direct suppressive effect of Curcuma longa L./curcumin on female gonads via multiple mechanisms of action - suppression of ovarian cell proliferation and viability, promotion of their apoptosis (at the level of mRNA transcription and subsequent accumulation of promoters of genes regulating these activities) and release of anti-proliferative and pro-apoptotic progesterone and androgen. The potential anti-gonadal action of curcumin should be taken into account by consumers of Curcuma longa L.-containing products.


Assuntos
Curcumina/farmacologia , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/fisiologia , Suínos , Animais , Técnicas de Cultura de Células/veterinária , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...