Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geohealth ; 6(3): e2021GH000506, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35795693

RESUMO

Ultrahigh-resolution air quality models that resolve sharp gradients of pollutant concentrations benefit the assessment of human health impacts. Mitigating fine particulate matter (PM2.5) concentrations over the past decade has triggered ozone (O3) deterioration in China. Effective control of both pollutants remains poorly understood from an ultrahigh-resolution perspective. We propose a regional-to-local model suitable for quantitatively mitigating pollution pathways at various resolutions. Sensitivity scenarios for controlling nitrogen oxide (NOx) and volatile organic compound (VOC) emissions are explored, focusing on traffic and industrial sectors. The results show that concurrent controls on both sectors lead to reductions of 17%, 5%, and 47% in NOx, PM2.5, and VOC emissions, respectively. The reduced traffic scenario leads to reduced NO2 and PM2.5 but increased O3 concentrations in urban areas. Guangzhou is located in a VOC-limited O3 formation regime, and traffic is a key factor in controlling NOx and O3. The reduced industrial VOC scenario leads to reduced O3 concentrations throughout the mitigation domain. The maximum decrease in median hourly NO2 is >11 µg/m³, and the maximum increase in the median daily maximum 8-hr rolling O3 is >10 µg/m³ for the reduced traffic scenario. When controls on both sectors are applied, the O3 increase reduces to <7 µg/m³. The daily averaged PM2.5 decreases by <2 µg/m³ for the reduced traffic scenario and varies little for the reduced industrial VOC scenario. An O3 episode analysis of the dual-control scenario leads to O3 decreases of up to 15 µg/m³ (8-hr metric) and 25 µg/m³ (1-hr metric) in rural areas.

2.
J Air Waste Manag Assoc ; 71(2): 247-267, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32735484

RESUMO

A street canyon pollution dispersion model is described which accounts for a wide range of canyon geometries including deep and/or asymmetric canyons. The model uses up to six component sources to represent different effects of street canyons on the dispersion of road traffic emissions. The final concentration is a weighted sum of the component concentrations dependent on output point location; canyon geometry; and wind direction relative to canyon orientation. Conventional approaches to modeling pollution in street canyons, such as the "Operational Street Pollution Model" (OSPM), do not account for canyons with high aspect ratios, pavements, and building porosity, so are not applicable for all urban morphologies. The new model has been implemented within the widely used, street-level resolution ADMS-Urban air quality model, which is used for air quality assessment and forecasting in cities such as Hong Kong where high-rise buildings form deep and complex street canyons. The new model is evaluated in relation to measured pollutant concentration data from the "Optimisation of modelling methods for traffic pollution in streets" (TRAPOS) project and routine measurements from 42 monitoring sites in London. Comparisons have been made between modeling using the new canyon model; a simpler approach to canyon modeling based on the OSPM formulation; and without any inclusion of canyon effects. The TRAPOS dataset has been used to highlight the model's ability to replicate the dependence of concentration on wind speed and direction, and also to show improved model performance for the prediction of high concentration values, which is particularly important for model applications such as planning and assessment. The London dataset, in which the street canyons are less well defined, has also been used to demonstrate improved model performance for this advanced approach compared to the simpler methods, by categorizing the measurement locations according to site type (background, near-road, and strong canyon). Implications: Currently available air dispersion models do not allow for a number of geometric features that influence air dispersion within street canyon environments. The new advanced street canyon model described in this paper accounts for: emissions from each road carriageway separately; canyon asymmetry; canyon porosity; and pavements. The extensive model evaluation presented shows that the new model demonstrates good performance, better than more basic approaches in which the complex geometries that define "canyons" are neglected.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Modelos Teóricos , Emissões de Veículos/análise , Vento
3.
J Air Waste Manag Assoc ; 67(6): 702-712, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28121519

RESUMO

An explicit NOx chemistry method has been implemented in AERMOD version 15181, ADMSM. The scheme has been evaluated by comparison with the methodologies currently recommended by the U.S. EPA for Tier 3 NO2 calculations, that is, OLM and PVMRM2. Four data sets have been used for NO2 chemistry method evaluation. Overall, ADMSM-modeled NO2 concentrations show the most consistency with the AERMOD calculations of NOx and the highest Index of Agreement; they are also on average lower than those of both OLM and PVMRM2. OLM shows little consistency with modeled NOx concentrations and markedly overpredicts NO2. PVMRM2 shows performance closer to that of ADMSM than OLM; however, its behavior is inconsistent with modeled NOx in some cases and it has less good statistics for NO2. The trend in model performance can be explained by examining the features particular to each chemistry method: OLM can be considered as a screening model as it calculates the upper bound of conversion from NO to NO2 possible with the background O3 concentration; PVMRM2 includes a much-improved estimate of in-plume O3 but is otherwise similar to OLM, assuming instantaneous reaction of NO with O3; and ADMSM allows for the rate of this reaction and also the photolysis of NO2. Evaluation with additional data sets is needed to further clarify the relative performance of ADMSM and PVMRM2. IMPLICATIONS: Extensive evaluation of the current AERMOD Tier 3 chemistry methods OLM and PVMRM2, alongside a new scheme that explicitly calculates the oxidation of NO by O3 and the reverse photolytic reaction, shows that OLM consistently overpredicts NO2 concentrations. PVMRM2 performs well in general, but there are some cases where this method overpredicts NO2. The new explicit NOx chemistry scheme, ADMSM, predicts NO2 concentrations that are more consistent with both the modeled NOx concentrations and the observations.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Modelos Teóricos , Óxido Nítrico/química
4.
Faraday Discuss ; 189: 589-616, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27121106

RESUMO

Air pollution is the environmental factor with the greatest impact on human health in Europe. Understanding the key processes driving air quality across the relevant spatial scales, especially during pollution exceedances and episodes, is essential to provide effective predictions for both policymakers and the public. It is particularly important for policy regulators to understand the drivers of local air quality that can be regulated by national policies versus the contribution from regional pollution transported from mainland Europe or elsewhere. One of the main objectives of the Coupled Urban and Regional processes: Effects on AIR quality (CUREAIR) project is to determine local and regional contributions to ozone events. A detailed zero-dimensional (0-D) box model run with the Master Chemical Mechanism (MCMv3.2) is used as the benchmark model against which the less explicit chemistry mechanisms of the Generic Reaction Set (GRS) and the Common Representative Intermediates (CRIv2-R5) schemes are evaluated. GRS and CRI are used by the Atmospheric Dispersion Modelling System (ADMS-Urban) and the regional chemistry transport model EMEP4UK, respectively. The MCM model uses a near-explicit chemical scheme for the oxidation of volatile organic compounds (VOCs) and is constrained to observations of VOCs, NOx, CO, HONO (nitrous acid), photolysis frequencies and meteorological parameters measured during the ClearfLo (Clean Air for London) campaign. The sensitivity of the less explicit chemistry schemes to different model inputs has been investigated: Constraining GRS to the total VOC observed during ClearfLo as opposed to VOC derived from ADMS-Urban dispersion calculations, including emissions and background concentrations, led to a significant increase (674% during winter) in modelled ozone. The inclusion of HONO chemistry in this mechanism, particularly during wintertime when other radical sources are limited, led to substantial increases in the ozone levels predicted (223%). When the GRS and CRIv2-R5 schemes are run with the equivalent model constraints to the MCM, they are able to reproduce the level of ozone predicted by the near-explicit MCM to within 40% and 20% respectively for the majority of the time. An exception to this trend was observed during pollution episodes experienced in the summer, when anticyclonic conditions favoured increased temperatures and elevated O3. The in situ O3 predicted by the MCM was heavily influenced by biogenic VOCs during these conditions and the low GRS [O3] : MCM [O3] ratio (and low CRIv2-R5 [O3] : MCM [O3] ratio) demonstrates that these less explicit schemes under-represent the full O3 creation potential of these VOCs. To fully assess the influence of the in situ O3 generated from local emissions versus O3 generated upwind of London and advected in, the time since emission (and, hence, how far the real atmosphere is from steady state) must be determined. From estimates of the mean transport time determined from the NOx : NOy ratio observed at North Kensington during the summer and comparison of the O3 predicted by the MCM model after this time, ∼60% of the median observed [O3] could be generated from local emissions. During the warmer conditions experienced during the easterly flows, however, the observed [O3] may be even more heavily influenced by London's emissions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...