Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(1): 610-617, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-27992174

RESUMO

A bottom-up electrochemical process for fabricating conjugated ultrathin layers with tailored switchable properties is developed. Ultrathin layers of covalently grafted oligo(bisthienylbenzene) (oligo(BTB)) are used as switchable organic electrodes, and 3,4-ethylenedioxythiophene (EDOT) is oxidized on this layer. Adding only a few (less than 3) nanometers of EDOT moieties (5 to 6 units ) completely changes the switching properties of the layer without changing the surface concentration of the electroactive species. A range of new materials with tunable interfacial properties is created. They consist of oligo(BTB)-oligo(EDOT) diblock oligomers of various relative lengths covalently grafted onto the underlying electrode. These films retain reversible redox on/off switching and their switching potential can be finely tuned between +0.6 and -0.3 V/SCE while the overall thickness remains below 11 nm.

2.
J Am Chem Soc ; 132(30): 10224-6, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20662496

RESUMO

Herein, we report the variation of localized surface plasmon resonance (LSPR) of gold nanoparticle (NP) arrays covered by poly(3,4-ethylenedioxythiophene) (PEDOT) as a function of the electronic state of the polymer. Giant shifts and fine-tuning of the LSPR of gold NPs surrounded by PEDOT/sodium docecyl sulfate have been achieved. The color variations of plasmonic/conducting polymer (CP) devices are given not only by changes of the optical properties of the CP upon doping but also by a close synergy of the optical properties of CP and NP. Such systems can considerably extend the field of CP-based electrochromic devices.

3.
J Am Chem Soc ; 131(41): 14920-7, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19785424

RESUMO

The functionalization of electrode materials through diazonium electroreduction using a heteroaromatic compound, without phenyl groups, has been investigated for the first time. The electrochemical reduction of 2-aminoterthiophenyldiazonium cation, generated in situ, coats the electrode (glassy carbon (GC), gold or platinum) with an ultrathin organic layer, shown by X-ray photoelectron spectroscopy (XPS) of that deposited on gold to consist of terthiophene or oligothiophene. The coating is electroactive at potential close to that of terthiophene in solution. The electrochemical response of the modified GC electrode in the presence of various reversible redox couples shows that the attached layer acts as a conductive switch. It behaves as a barrier to electron transfer when the standard redox potential is below 0.5 V/SCE; in this case diode-like behavior is observed. However, for more oxidizing redox probes the layer can be considered as transparent and no barrier effect is observed. The layer deposited on a platinum ultramicroelectrode (UME) behaves similarly to that obtained on the large GC electrode. Scanning electrochemical microscopy (SECM) can be performed using this electroswitchable modified platinum UME which can act as a filter toward competitive redox exchange pathways.

4.
Nano Lett ; 9(5): 2144-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19361167

RESUMO

Control of the optical properties of metallic nanoparticles (NP) is realized using an electrochemical switch consisting of a thin layer of conducting polymer (CP). It is shown that the quenching of localized surface plasmon (LSP) sustained by oblate particles depends of the frequency of the LSP resonance. This effect is attributed to the variation of the CP dielectric function with wavelength. As a consequence, prolate arrays show total quenching of the LSP resonance along the major axis of the particles whereas modulation and moderate damping are observed along the minor axis. Combining electroactive conducting polymer and prolate NP makes it possible to design active plasmonic devices with anisotropic optical response upon CP switching. In the present case, such devices can be used as active filters or polarizers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...