Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alkaloids Chem Biol ; 76: 1-61, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26827882

RESUMO

The biosynthetic pathway of the monoterpenoid indole alkaloid ajmaline in the genus Rauvolfia, in particular Rauvolfia serpentina Benth. ex Kurz, is one of the few pathways that have been comprehensively uncovered. Every step in the progress of plant alkaloid biosynthesis research is due to the endeavors of several generations of scientists and the advancement of technologies. The tissue and cell suspension cultures developed in the 1970s by M.H. Zenk enabled the extraction of alkaloids and crude enzymes for use as experimental materials, thus establishing the foundation for further research on enzymatic reaction networks. In vivo NMR technology was first used in biosynthetic investigations in the 1990s following the invention of high-field cryo-NMR, which allowed the rapid and reliable detection of bioconversion processes within living plant cells. Shortly before, in 1988, a milestone was reached with the heterologous expression of the strictosidine synthase cDNA, which paved the way for the application of "reverse genetics" and "macromolecular crystallography." Both methods allowed the structural analysis of several Rauvolfia enzymes involved in ajmaline biosynthesis and expanded our knowledge of the enzyme mechanisms, substrate specificities, and structure-activity relationships. It also opened the door for rational enzyme engineering and metabolic steering. Today, the research focus of ajmaline biosynthesis is shifting from "delineation" to "utilization." The Pictet-Spenglerase strictosidine synthase, strictosidine glucosidase, together with raucaffricine glucosidase, as pioneers in this area, have become useful tools to generate "privileged structures" and "diversity oriented" syntheses, which may help to construct novel scaffolds and to set up libraries of sarpagan-ajmalan-type alkaloids in chemo-enzymatic approaches.


Assuntos
Ajmalina/biossíntese , Alcaloides Indólicos/metabolismo , Ajmalina/química , Glucosidases/metabolismo , Alcaloides Indólicos/química , Espectroscopia de Ressonância Magnética , Alcaloides de Triptamina e Secologanina/química , Alcaloides de Triptamina e Secologanina/metabolismo
2.
Curr Med Chem ; 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25850764

RESUMO

The Pictet-Spenglerasestrictosidine synthase (STR) has been characterized as the central enzyme in the biosynthesis of around 2000 monoterpenoid indole alkaloids in plants. In the light of a high therapeutic value and huge scaffold diversity these alkaloids represent, STR as an enzyme has attracted great attentions in recent years, intending to be utilized in the formation of new interesting alkaloids with unusual substitution pattern or even with novel scaffolds. For outlining the application potential that STR possesses, together with insight into the reaction mechanism catalyzed by STR, strategies and methods for exploring the applicability of STR have been updated in this article by taking R. serpertina STR(RS-STR) and C. roseus.STR (CR-STR) as representative models, followed by introducing the latest released complex structures of RS-STR with new substrates. Examples provided here, including substrate scaffold tailoring, X-ray crystal complex structure comparison, protein engineering and biosynthetic pathway reprogramming, pave the way to finally construct novel alkaloids libraries by chemo-enzymatic approaches.

3.
J Enzyme Inhib Med Chem ; 30(3): 472-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25140865

RESUMO

Insight into the structure and inhibition mechanism of O-ß-d-glucosidases by deoxa-pyranosylamine type inhibitors is provided by X-ray analysis of complexes between raucaffricine and strictosidine glucosidases and N-(cyclohexylmethyl)-, N-(cyclohexyl)- and N-(bromobenzyl)-ß-d-gluco-1,5-deoxa-pyranosylamine. All inhibitors anchored exclusively in the catalytic active site by competition with appropriate enzyme substrates. Thus facilitated prospective elucidation of the binding networks with residues located at <3.9 Å distance will enable the development of potent inhibitors suitable for the production of valuable alkaloid glucosides, raucaffricine and strictosidine, by means of synthesis in Rauvolfia serpentina cell suspension cultures.


Assuntos
Ciclopentanos/farmacologia , Glucosidases/antagonistas & inibidores , Glucosidases/metabolismo , Álcoois Açúcares/farmacologia , Sítios de Ligação/efeitos dos fármacos , Ciclopentanos/química , Relação Dose-Resposta a Droga , Glucosidases/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Rauwolfia/citologia , Rauwolfia/enzimologia , Relação Estrutura-Atividade , Álcoois Açúcares/química
4.
J Biol Chem ; 287(14): 11213-21, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22334702

RESUMO

Perakine reductase (PR) catalyzes the NADPH-dependent reduction of the aldehyde perakine to yield the alcohol raucaffrinoline in the biosynthetic pathway of ajmaline in Rauvolfia, a key step in indole alkaloid biosynthesis. Sequence alignment shows that PR is the founder of the new AKR13D subfamily and is designated AKR13D1. The x-ray structure of methylated His(6)-PR was solved to 2.31 Å. However, the active site of PR was blocked by the connected parts of the neighbor symmetric molecule in the crystal. To break the interactions and obtain the enzyme-ligand complexes, the A213W mutant was generated. The atomic structure of His(6)-PR-A213W complex with NADPH was determined at 1.77 Å. Overall, PR folds in an unusual α(8)/ß(6) barrel that has not been observed in any other AKR protein to date. NADPH binds in an extended pocket, but the nicotinamide riboside moiety is disordered. Upon NADPH binding, dramatic conformational changes and movements were observed: two additional ß-strands in the C terminus become ordered to form one α-helix, and a movement of up to 24 Å occurs. This conformational change creates a large space that allows the binding of substrates of variable size for PR and enhances the enzyme activity; as a result cooperative kinetics are observed as NADPH is varied. As the founding member of the new AKR13D subfamily, PR also provides a structural template and model of cofactor binding for the AKR13 family.


Assuntos
Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , NADP/metabolismo , Cristalografia por Raios X , Evolução Molecular , Metilação , Modelos Moleculares , NADP/farmacologia , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Rauwolfia/enzimologia , Alinhamento de Sequência
5.
J Am Chem Soc ; 134(3): 1498-500, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22229634

RESUMO

The Pictet-Spenglerase strictosidine synthase (STR1) has been recognized as a key enzyme in the biosynthesis of some 2000 indole alkaloids in plants, some with high therapeutic value. In this study, a novel function of STR1 has been detected which allows for the first time a simple enzymatic synthesis of the strictosidine analogue 3 harboring the piperazino[1,2-a]indole (PI) scaffold and to switch from the common tryptoline (hydrogenated carboline) to the rare PI skeleton. Insight into the reaction is provided by X-ray crystal analysis and modeling of STR1 ligand complexes. STR1 presently provides exclusively access to 3 and can act as a source to generate by chemoenzymatic approaches libraries of this novel class of alkaloids which may have new biological activities. Synthetic or natural monoterpenoid alkaloids with the PI core have not been reported before.


Assuntos
Carbolinas/metabolismo , Carbono-Nitrogênio Liases/metabolismo , Indóis/metabolismo , Piperazinas/metabolismo , Rauwolfia/enzimologia , Carbolinas/química , Cristalografia por Raios X , Indóis/química , Modelos Moleculares , Piperazinas/química , Rauwolfia/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
6.
ACS Chem Biol ; 7(1): 226-34, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22004291

RESUMO

Two similar enzymes with different biosynthetic function in one species have evolved to catalyze two distinct reactions. X-ray structures of both enzymes help reveal their most important differences. The Rauvolfia alkaloid biosynthetic network harbors two O-glucosidases: raucaffricine glucosidase (RG), which hydrolyses raucaffricine to an intermediate downstream in the ajmaline pathway, and strictosidine glucosidase (SG), which operates upstream. RG converts strictosidine, the substrate of SG, but SG does not accept raucaffricine. Now elucidation of crystal structures of RG, inactive RG-E186Q mutant, and its complexes with ligands dihydro-raucaffricine and secologanin reveals that it is the "wider gate" of RG that allows strictosidine to enter the catalytic site, whereas the "slot-like" entrance of SG prohibits access by raucaffricine. Trp392 in RG and Trp388 in SG control the gate shape and acceptance of substrates. Ser390 directs the conformation of Trp392. 3D structures, supported by site-directed mutations and kinetic data of RG and SG, provide a structural and catalytic explanation of substrate specificity and deeper insights into O-glucosidase chemistry.


Assuntos
Glucosidases/metabolismo , Proteínas de Plantas/metabolismo , Rauwolfia/enzimologia , Alcaloides de Vinca/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Evolução Molecular , Glucosidases/química , Glucosídeos Iridoides/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/química , Ligação Proteica , Rauwolfia/química , Serina/química , Serina/metabolismo , Especificidade por Substrato , Triptofano/química , Triptofano/metabolismo
7.
Angew Chem Int Ed Engl ; 50(37): 8538-64, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21830283

RESUMO

Alkaloids are an important class of natural products that are widely distributed in nature and produced by a large variety of organisms. They have a wide spectrum of biological activity and for many years were used in folk medicine. These days, alkaloids also have numerous applications in medicine as therapeutic agents. The importance of these natural products in inspiring drug discovery programs is proven and, therefore, their continued synthesis is of significant interest. The condensation discovered by Pictet and Spengler is the most important method for the synthesis of alkaloid scaffolds. The power of this synthesis method has been convincingly proven in the construction of stereochemicaly and structurally complex alkaloids.


Assuntos
Alcaloides/síntese química , Produtos Biológicos/síntese química , Química Orgânica , Alcaloides/química , Alcaloides/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Descoberta de Drogas , Humanos , Modelos Moleculares , Conformação Molecular
8.
Integr Cancer Ther ; 10(3): NP12-23, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21733985

RESUMO

The organic extract of Periplaneta americana L. (Dictyoptera; Blattidae) has been traditionally used in southwestern China as an alternative medicine against disorders such as hepatitis, trauma, gastric ulcers, burns, and heart disease. The present study describes bioassay-guided purification and chemotherapeutic evaluation of the 60% ethanolic fraction of P americana organic extracts (PAE60). The most effective cytotoxic fraction was determined by way of repeated in vitro screenings against 12 distinct cultured human carcinoma cell lines: Eca 109, BGC823, HO8910, LS174T, CNE, HeLa, K562, PC-3, A549, BEL 7404, HL-60, and KB, followed by in vivo antitumor assays of the lead fraction (PAE60). The complexity of enriched active fraction was qualitatively evaluated using thin layer chromatography. Reconstituted PAE60 was effective at inhibiting HL-60, KB, CNE, and BGC823 cell growth with IC(50) values <20 µg mL-(1). PAE60 reduced tumor growth in S180-bearing immunocompetent mice by 72.62% after 10 days following oral doses of 500 mg kg d-(1) compared with 78.75% inhibition following 40 mg kg d-(1) of cyclophosphamide (CTX). Thymus and spleen indices of S180-bearing mice treated with PAE60 were significantly greater (P < .05) than CTX treatment groups, suggesting potential immunomodulation of antitumor host defenses by PAE60. Antiviral activity was also investigated and PAE60 inhibited herpes simplex type-2 replication (IC(50) = 4.11 ± 0.64 µg mL-(1)) with a selectivity index (CC(50) to IC(50) ratio) of 64.84 in Vero cells but was less effective on type-1 virus (IC(50) of 25.6 ± 3.16 µg mL-(1)). These results support future clinical trials on P. americana as an alternative or complementary medicinal agent.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Periplaneta/química , Extratos de Tecidos/química , Extratos de Tecidos/farmacologia , Animais , Antivirais/química , Antivirais/farmacologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Ciclofosfamida/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Células HeLa , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Humanos , Células K562 , Células KB , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Distribuição Aleatória , Células Vero
9.
Org Lett ; 13(10): 2792-4, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21510619

RESUMO

A new synthetic protocol for efficient and regiospecifc assembly of indolizines and pyrido[1,2-a]indoles by coupling of substituted methyl bromides and alkynes with corresponding pyrrole-2-carboxaldehyde and 1H-indole-2-carboxaldehyde has been developed. Additionally, a possible mechanism for the reaction is proposed.


Assuntos
Alcinos/química , Indóis/química , Indóis/síntese química , Indolizinas/síntese química , Pirróis/química , Catálise , Hidrocarbonetos Bromados/química , Indolizinas/química , Estrutura Molecular , Estereoisomerismo
10.
Nat Prod Res ; 25(3): 203-21, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20603774

RESUMO

Three series of di- and trisubstituted derivatives of cinnamic alcohol and its conjugated dienol analogues were designed and synthesised. The derivatives were screened for cytotoxicity against nine tumour cell lines: KB, A549, Hela, CNE, PC-3, BEL-7404, HL-60, BGC823 and P388D1. Most of the cinnamic alcohol derivatives showed cytotoxic activity. The compound 7-(4',5'-dichlorobenzyloxy)-6,8-dihydroxycinnamic alcohol (55) exhibited significant cytotoxicity to seven human tumour cell lines on a micromolar range, especially with regard to the KB and P388D1 cell lines, showing IC(50) values of 0.4 and 0.5 µM, respectively. The structure-activity relationships of the derivatives are discussed.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Propanóis/química , Propanóis/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Células HL-60 , Células HeLa , Humanos , Relação Estrutura-Atividade
11.
Chem Asian J ; 5(11): 2400-4, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20872397

RESUMO

Facile chemoenzymatic syntheses of cytotoxic monoterpenoid indole alkaloids with novel skeletons and multiple chiral centers are described. Synthesis of these alkaloids was achieved by a simple one-step reaction using strictosidine and 12-aza-strictosidine as the key intermediates. Strictosidines were prepared by coupling of secologanin with tryptamine and 7-aza-tryptamine, respectively, using the immobilized recombinant Rauvolfia strictosidine synthase. A detailed stereochemical analysis is presented herein. The results provide an opportunity for a chemoenzymatic approach that leads to an increased diversification of complex alkaloids with improved structures and activities.


Assuntos
Carbono-Nitrogênio Liases/química , Enzimas Imobilizadas/química , Alcaloides de Triptamina e Secologanina/síntese química , Compostos Aza/química , Biocatálise , Modelos Moleculares , Estrutura Molecular , Rauwolfia/enzimologia , Proteínas Recombinantes/química , Alcaloides de Triptamina e Secologanina/química , Alcaloides de Vinca/química
13.
Bioorg Med Chem ; 18(17): 6351-9, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20673727

RESUMO

Three series of aza-caffeic acid derivatives with different linkers were designed and synthesized. Each of the synthesized derivatives was then used in cytotoxicity screening on either 8 or 12 human cancer cell lines. The structure-activity relationships on three structural regions A, B, and C are analyzed in detail, indicating that a nine bond linker B, containing a piperazine unit, is the most favorable linker leading to the generation of molecules with potent cytotoxicities. Compound (E)-1-(4-(3,4-dichlorobenzyl)piperazin-1-yl)-3-(4-(4-ethoxybenzyloxy)-3,5-dimethoxyphenyl)prop-2-en-1-one (80) exhibited the most significant and selective cytotoxicity to KB, BEL7404, K562, and Eca109 cell lines, with IC(50) values of 0.2, 2.0, 1.7, and 1.1 microM, respectively, stronger than that seen for caffeic acid phenethyl ester (CAPE) and cisplatin (CDDP). Flow cytometric and western blot analysis indicate that compound 80 plays a role in mitochondria-dependent apoptosis activity by suppressing K562 cell proliferation in a concentration- and time-dependent manner.


Assuntos
Compostos Aza/química , Compostos Aza/farmacocinética , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Compostos Aza/síntese química , Ácidos Cafeicos/síntese química , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Relação Estrutura-Atividade
14.
Nat Prod Res ; 24(8): 759-66, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20432158

RESUMO

A dual vector (pQE-70-STR1-SG) containing coding regions of strictosidine synthase (STR1, EC 4.3.3.2) and strictosidine glucosidase (SG, EC 3.2.1.105) from the Indian medicinal plant Rauvolfia serpentina was constructed. Functional expression of the vector in Escherichia coli cells (M15 strain) was proven by isolation of prepurified enzyme extracts, which show both STR1 and SG activities. Incubation of the enzyme in the presence of tryptamine and secologanin delivered the indole alkaloid cathenamine, demonstrating functional co-expression of both STR1- and SG-cDNAs. Cathenamine reduction by sodium borohydride leading to tetrahydroalstonine revealed the chemo-enzymatic indole alkaloid synthesis.


Assuntos
Carbono-Nitrogênio Liases/metabolismo , Escherichia coli/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glucosidases/metabolismo , Alcaloides Indólicos/metabolismo , Rauwolfia/enzimologia , Carbono-Nitrogênio Liases/genética , Clonagem Molecular , DNA Complementar/genética , Regulação Enzimológica da Expressão Gênica , Glucosidases/genética , Alcaloides Indólicos/química , Estrutura Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rauwolfia/genética , Alcaloides de Triptamina e Secologanina/química
15.
Chem Biodivers ; 7(4): 860-70, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20397221

RESUMO

Strictosidine synthase (STR1) catalyzes the stereoselective formation of 3alpha(S)-strictosidine from tryptamine and secologanin. Strictosidine is the key intermediate in the biosynthesis of 2,000 plant monoterpenoid indole alkaloids, and it is a key precursor of enzyme-mediated synthesis of alkaloids. An improved expression system is described which leads to optimized His(6)-STR1 synthesis in Escherichia coli. Optimal production of STR1 was achieved by determining the impact of co-expression of chaperones pG-Tf2 and pG-LJE8. The amount and activity of STR1 was doubled in the presence of chaperone pG-Tf2 alone. His(6)-STR1 immobilized on Ni-NTA can be used for enzymatic synthesis of strictosidines on a preparative scale. With the newly co-expressed His(6)-STR1, novel 3alpha(S)-12-azastrictosidine was obtained by enzymatic catalysis of 7-azatryptamine and secologanin. The results obtained are of significant importance for application to chemo-enzymatic approaches leading to diversification of alkaloids with novel improved structures.


Assuntos
Alcaloides/química , Carbono-Nitrogênio Liases/genética , Carbono-Nitrogênio Liases/metabolismo , Biocatálise , Carbono-Nitrogênio Liases/isolamento & purificação , Catharanthus/enzimologia , Histidina/genética , Glucosídeos Iridoides , Iridoides/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Oligopeptídeos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Triptaminas/química , Alcaloides de Vinca/biossíntese , Alcaloides de Vinca/química
16.
Top Curr Chem ; 297: 67-103, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21495257

RESUMO

The multi-step enzyme catalysed biosyntheses of monoterpenoid indole and isoquinoline alkaloids are described. Special emphasis is placed on those pathways leading to alkaloids of pharmacological and medicinal significance which have been fully elucidated at the enzyme level. The successful identification and cloning of cDNAs of single enzymes and their application provides great opportunities to develop novel strategies for both in vitro and in vivo alkaloid production in whole plants or tissue cultures, as well as in microbial systems such as Escherichia coli and yeast. Enzyme crystallisation, 3D analyses and site-directed mutation allowed rational engineering of enzyme substrate acceptance, which in turn can be used for reprogramming in vivo alkaloid biosynthesis and for the design of biomimetic alkaloid syntheses. These strategies broaden structural diversity and allow the creation of large libraries of unnatural alkaloid with expected optimised or novel biological activities. The chemo-enzymatic syntheses of the above-mentioned alkaloid groups and their precursors (in addition to selected examples of other alkaloid families) provides an overview of how enzyme reactions are integrated into the development of total chemical syntheses.


Assuntos
Alcaloides/biossíntese , Biotecnologia/métodos , Engenharia Genética/métodos , Indóis/metabolismo , Isoquinolinas/metabolismo , Alcaloides/síntese química , Alcaloides/química , Animais , Bactérias/enzimologia , Bactérias/genética , Vias Biossintéticas , Biotecnologia/tendências , Fungos/enzimologia , Fungos/genética , Engenharia Genética/tendências , Indóis/síntese química , Indóis/química , Isoquinolinas/síntese química , Isoquinolinas/química , Modelos Moleculares , Plantas/enzimologia , Plantas/genética
17.
Bioorg Med Chem ; 17(17): 6380-9, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19660956

RESUMO

A diverse series of C-23 esterified silybin derivatives (1a-n) were designed and synthesized. The antioxidative properties of these compounds were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion radical scavenging, ferrous ion chelation, and inhibition of rat liver homogenate lipid peroxidation. Their protective effects on the prevention of hydrogen peroxide induced DNA damage were also investigated. Most of the synthesized compounds exhibited more effective antioxidant activities than silybin. The esterified silybin analogues displayed satisfactory performance especially on iron chelation and antiperoxidative activity. Compound 1n in particular exhibited remarkable antiperoxidative effect with an IC(50) value of 0.2+/-0.1 microM, which was stronger than that of quercetin (IC(50)=1.8+/-0.6 microM). Compounds 1c, 1e, 1g, 1h and 1k displayed potent, dose-dependent protective properties against DNA cleavage. The results of the bioassays support the antioxidative and DNA protective effects of these synthesized silybin derivatives.


Assuntos
Sequestradores de Radicais Livres/química , Peroxidação de Lipídeos/efeitos dos fármacos , Animais , Dano ao DNA , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/farmacologia , Ratos , Silibina , Silimarina/síntese química , Silimarina/química , Silimarina/farmacologia , Relação Estrutura-Atividade
18.
Chem Biodivers ; 6(7): 1053-65, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19623551

RESUMO

A phytochemical investigation of the roots of Ligularia atroviolacea resulted in the isolation of 24 compounds including seven new eremophilanoids named eremophila-3,7(11),8-triene-12,8;14,6alpha-diolide (1), 3beta-(angeloyloxy)eremophil-7(11)-en-12,8beta-olid-14-oic acid (2), 1alpha-chloro-10beta-hydroxy-6beta-(2-methylpropanoyloxy)-9-oxo-7,8-furoeremophilane (3), (10betaH)-8-oxoeremophila-3(4),6(7)-diene-12,14-dioic acid (4), (10alphaH)-8-oxoeremophila-3(4),6(7)-diene-12,14-dioic acid (5), 8beta-[eremophila-3',7'(11')-diene-12',8'alpha;14',6'alpha-diolide]eremophila-3,7(11)-diene-12,8alpha;14,6alpha-diolide (6), and ligulatrovine A (7), eleven known eremophilanoids, 8-18, four steroids, one glucose derivative, and one fatty acid. The structures of these compounds were elucidated by spectroscopic methods including 2D-NMR experiments. The structure of 3 was also established by an X-ray diffraction study. The in vitro cytotoxicity evaluation of selected compounds was performed on seven cultured tumor cell lines, i.e., KB, BEL-7404, A549, HL-60, HeLa, CNE, and P-388D1. The preliminary taxonomy of this species was also discussed, and the possible biogenesis of a dimer possessing a new noreremophilanoid type skeleton, 7, is presented in a preliminary form.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Asteraceae/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Compostos Orgânicos/química , Compostos Orgânicos/isolamento & purificação , Compostos Orgânicos/toxicidade , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Raízes de Plantas/química , Plantas Medicinais/química
19.
Angew Chem Int Ed Engl ; 48(28): 5211-3, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19496101

RESUMO

Cutting carbons: The three-dimensional structure of polyneuridine aldehyde esterase (PNAE) gives insight into the enzymatic mechanism of the biosynthesis of C(9)- from C(10)-monoterpenoid indole alkaloids (see scheme). PNAE is a very substrate-specific serine esterase. It harbors the catalytic triad S87-D216-H244, and is a new member of the alpha/beta-fold hydrolase superfamily. Its novel function leads to the diversification of alkaloid structures.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Substituição de Aminoácidos , Biocatálise , Proteínas Mutantes/metabolismo , Estrutura Terciária de Proteína , Alcaloides de Triptamina e Secologanina/química , Especificidade por Substrato
20.
Bioorg Med Chem ; 17(9): 3414-25, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19362850

RESUMO

An unusual class of 5,6,7-trioxygenated dihydroflavonols (3a-e and 4a-j) were designed and prepared. Their antioxidative properties were assessed by examining their capacities in several in vitro models, including superoxide anion and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, rat liver homogenate lipid peroxidation inhibition, PC12 cells protection from oxidative damage, and xanthine oxidase inhibition. These dihydroflavonols displayed positive quenching abilities towards O(2)(-) and DPPH free radicals, in which the majority exhibited superior antioxidant properties to Vitamin C. cis-Configurated compound (+/-)-3e demonstrated remarkable inhibition to LPO with an IC(50) value of 1.9+/-0.3 microM, which was apparently stronger than that of quercetin (IC(50)=6.0+/-0.4 microM). trans-Configurated dihydroflavonol (+/-)-4h exhibited significant protective effect on PC12 cells against oxidative damage with an EC(50) value of 41.5+/-5.3 microM, more effective compared to that of quercetin (EC(50)=81.8+/-8.7 microM). The 6-OH-5,7-dimethoxy analogue (+/-)-3d showed significant inhibition of xanthine oxidase with an IC(50) value of 16.0+/-0.8 microM, which is superior to that of allopurinol (IC(50)=23.5+/-2.0 microM). In addition to the hypothesized action mechanism of the bio-active compounds, 3D modeling was used to analyze the relationship between the minimized-energy structures and antioxidant activities.


Assuntos
Flavonóis/síntese química , Flavonóis/farmacologia , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Neurônios/efeitos dos fármacos , Xantina Oxidase/antagonistas & inibidores , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Flavonóis/química , Peroxidação de Lipídeos/efeitos dos fármacos , Modelos Moleculares , Conformação Molecular , Neurônios/metabolismo , Células PC12 , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Xantina Oxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...