Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6983, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379929

RESUMO

Cordilleran orogenic systems have complex, polycyclic magmatic and deformation histories, and the timescales and mechanisms of episodic orogenesis are still debated. Here, we show that detrital zircons (DZs) in terrigenous sediment from the late Pleistocene Amazon Fan, found at the terminus of the continent-scale Amazon River-fan system, record multiple, distinct modes of U-Pb crystallization ages and U-Th/He (ZHe) cooling ages that correlate to known South American magmatic and tectonic events. The youngest ZHe ages delineate two recent phases of Andean orogenesis; one in the Late Cretaceous - Paleogene, and another in the Miocene. Frequency analyses of the deep-time Phanerozoic record of DZ U-Pb and ZHe ages demonstrate a strong 72 Myr period in magmatic events, and 92 Myr and 57 Myr periods in crustal cooling. We interpret these results as evidence of changes in upper and lower plate coupling, associated with multiple episodes of magmatism and crustal deformation along the subduction-dominated western margin of South America.


Assuntos
Chumbo , América do Sul
2.
Data Brief ; 36: 107026, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33997192

RESUMO

This study presents geochemical and geochronological data from rock samples collected from the Western Carpathian mountains, eastern Slovakia. Granite assemblages that intrude the Gemeric and Veporic Superunits were imaged using a petrographic microscope to determine rock textures and their mineral assemblages. Zircon grains from seven individual portions of the Gemeric granites (Hnilec, Betliar, Elisabeth Mine, Poproc plutons) and one from the Veporic unit (Klenovec pluton) were dated using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) and Secondary Ion Mass Spectrometry (SIMS). Eight individual portions of the Gemeric unit's Betliar pluton and seven from the Klenovec granite were analyzed for major and trace elements using Fusion Inductively Coupled Plasma (ICP) and Fusion ICP-mass spectrometry. We also report detrital zircon ages from a radiolarite from the Meliata Unit that overlies blueschist and harzburgite-lizardite serpentinite assemblages near the city of Dobsiná, Slovakia. We applied X-ray Diffraction to a sample from the serpentine rocks, which reveal the presence of lizardite. The data are available for re-use to compare to future analyses of these Permian-age granites found in the Carpathian Mountains or similar Permiam assemblages elsewhere more broadly. Data reported in this article relates to G. Villaseñor, E.J. Catlos, I. Broska, M. Kohút, L. Hrasko, K. Aguilera, T.M. Etzel, J.R. Kyle, and D.F. Stockli, Evidence for widespread mid-Permian magmatic activity related to rifting following the Variscan orogeny (Western Carpathians), 2021, Lithos.

3.
J Geophys Res Solid Earth ; 126(12): e2021JB021702, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35859727

RESUMO

Subduction interface thermal structure changes drastically within the first few million years of underthrusting (i.e., subduction infancy). Metamorphic soles beneath ophiolites record snapshots of dynamic conditions and mechanical coupling during subduction infancy. Beneath the Samail Ophiolite (Oman), the sole comprises structurally higher high-temperature (HT) and lower low-temperature (LT) units. This inverted metamorphic gradient has been attributed to evolving metamorphic Pressure-Temperature (P-T) conditions during infancy; however, peak P-T and timing of LT sole subduction are poorly constrained. Oman Drilling Project core BT-1B sampled the base of the ophiolite in a location lacking the HT sole. Metasedimentary and meta-mafic samples collected from 104 m of core reveal that the LT sole subducted to similar peak P as HT rocks preserved elsewhere in Oman, but experienced ∼300°C lower peak T. Prograde fabrics record Si-in-phengite and amphibole chemistries consistent with peak P-T of ∼7-10 kbar and ∼450-550°C in the epidote-amphibolite facies. Retrograde fabrics record a transition from near-pervasive ductile to localized brittle strain under greenschist facies conditions. Titanite U-Pb ages (n = 2) constrain timing of peak LT sole subduction to ∼91 Ma (post-dating initial HT sole subduction by ∼12-13 Myr) and dynamic retrogression through ∼90 Ma. Combined with existing geo/thermo-chronology, our results support a model of protracted subduction and accretion while the infant subduction zone experienced multi-phase, slow-fast-slow cooling. Temporal overlap of HT sole cooling (rehydration?) and ophiolite formation suggests that cooling may lead to interface weakening, facilitating upper-plate extension and spreading. The LT sole formed in a rapidly-refrigerating forearc after ophiolite formation and may reflect the transition to self-sustaining subduction.

4.
Sci Rep ; 8(1): 13839, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30218039

RESUMO

Sediment eroded from continents during ice ages can be rapidly (<104 years) transferred via rivers to the deep-sea and preserved in submarine fans, becoming a viable record of landscape evolution. We applied chemical weathering proxies and zircon geo-thermo-chronometry to late Pleistocene sediment recovered from the deep-sea Mississippi fan, revealing interactions between the Laurentide ice sheet (LIS) and broader Mississippi-Missouri catchment between ca. 70,000 and 10,000 years ago (70 to 10 ka). Sediment contribution from the Missouri catchment to the Mississippi fan was low between 70 and 30 ka but roughly doubled after the Last Glacial Maximum (LGM). Therefore, pre-LGM glacial advance profoundly altered the vast Missouri drainage through ice dams and/or re-routing of the river, thereby controlling the transfer of continental debris and freshwater toward southern outlets.

5.
PLoS One ; 12(6): e0179262, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28658320

RESUMO

The oldest-known air-breathing land animal is the millipede Pneumodesmus newmani, found in the Cowie Harbour Fish Bed at Stonehaven, Scotland. Here we report the youngest, most concordant 238U-206Pb zircon age from ash below the fish bed of 413.7±4.4 Ma (±2σ), whereas the youngest age from a tuffaceous sandstone above the fish bed is statistically indistinguishable at 414.3±7.1 Ma. The Cowie Harbour Fish Bed thus appears to be lowermost Devonian (Lochkovian), contrary to the previously accepted mid-Silurian age based on palynomorphs from adjacent exposures. This has implications for the evolutionary timetable of land colonization, as the Cowie ages overlap late Lochkovian zircon ages reported elsewhere for andesite below the nearby (~50 mi) Rhynie Chert, which has more advanced terrestrial biota. The results postdate the possible late Silurian Ludford Lane locality in Shropshire, England. Pneumodesmus newmani is thus not the earliest air-breathing land animal, unless the Ludford Lane locality is younger than presently assigned.


Assuntos
Mamíferos/fisiologia , Silicatos/química , Zircônio/química , Animais , Evolução Biológica
6.
Science ; 352(6284): 444-7, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27102480

RESUMO

Variations in continental volcanic arc emissions have the potential to control atmospheric carbon dioxide (CO2) levels and climate change on multimillion-year time scales. Here we present a compilation of ~120,000 detrital zircon uranium-lead (U-Pb) ages from global sedimentary deposits as a proxy to track the spatial distribution of continental magmatic arc systems from the Cryogenian period to the present. These data demonstrate a direct relationship between global arc activity and major climate shifts: Widespread continental arcs correspond with prominent early Paleozoic and Mesozoic greenhouse climates, whereas reduced continental arc activity corresponds with icehouse climates of the Cryogenian, Late Ordovician, late Paleozoic, and Cenozoic. This persistent coupled behavior provides evidence that continental volcanic outgassing drove long-term shifts in atmospheric CO2 levels over the past ~720 million years.

8.
Nat Commun ; 6: 8511, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26449321

RESUMO

Marine accumulations of terrigenous sediment are widely assumed to accurately record climatic- and tectonic-controlled mountain denudation and play an important role in understanding late Cenozoic mountain uplift and global cooling. Underpinning this is the assumption that the majority of sediment eroded from hinterland orogenic belts is transported to and ultimately stored in marine basins with little lag between erosion and deposition. Here we use a detailed and multi-technique sedimentary provenance dataset from the Yellow River to show that substantial amounts of sediment eroded from Northeast Tibet and carried by the river's upper reach are stored in the Chinese Loess Plateau and the western Mu Us desert. This finding revises our understanding of the origin of the Chinese Loess Plateau and provides a potential solution for mismatches between late Cenozoic terrestrial sedimentation and marine geochemistry records, as well as between global CO2 and erosion records.

9.
Proc Natl Acad Sci U S A ; 111(43): 15332-7, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25313084

RESUMO

The injection of carbon dioxide (CO2) captured at large point sources into deep saline aquifers can significantly reduce anthropogenic CO2 emissions from fossil fuels. Dissolution of the injected CO2 into the formation brine is a trapping mechanism that helps to ensure the long-term security of geological CO2 storage. We use thermochronology to estimate the timing of CO2 emplacement at Bravo Dome, a large natural CO2 field at a depth of 700 m in New Mexico. Together with estimates of the total mass loss from the field we present, to our knowledge, the first constraints on the magnitude, mechanisms, and rates of CO2 dissolution on millennial timescales. Apatite (U-Th)/He thermochronology records heating of the Bravo Dome reservoir due to the emplacement of hot volcanic gases 1.2-1.5 Ma. The CO2 accumulation is therefore significantly older than previous estimates of 10 ka, which demonstrates that safe long-term geological CO2 storage is possible. Integrating geophysical and geochemical data, we estimate that 1.3 Gt CO2 are currently stored at Bravo Dome, but that only 22% of the emplaced CO2 has dissolved into the brine over 1.2 My. Roughly 40% of the dissolution occurred during the emplacement. The CO2 dissolved after emplacement exceeds the amount expected from diffusion and provides field evidence for convective dissolution with a rate of 0.1 g/(m(2)y). The similarity between Bravo Dome and major US saline aquifers suggests that significant amounts of CO2 are likely to dissolve during injection at US storage sites, but that convective dissolution is unlikely to trap all injected CO2 on the 10-ky timescale typically considered for storage projects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...